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ABSTRACT 

Shared automated vehicles can provide different services in the future, including door-to-door (D2D) 

service, first-mile last-mile (FMLM) connections to transit stations, and as a low-cost transit vehicle. This 

paper leverages the agent-based simulator POLARIS to analyze the deployment of different SAV services 

in an integrated transit system for a 5% population sample of the Greater Chicago region. Accounting for 

15% of the mode share, 12,000 SAVs offered D2D service at $0.50 per-mile for trips averaging 4.6 miles. 

The FMLM service variant can raise the transit use from 5.4% to 6.3%, while the SAV fleet was more 

utilized by serving 12% more requests per day with only 4% increase in VMT compared to D2D service. 

Most FMLM service trips ranged from 1.7 to 1.9 miles, and the connections to rail stations dominated the 

FMLM trips instead of those to bus stations. The welfare analysis shows that residents in the suburban area 

benefited most from the SAV D2D service, followed by those in the urban area, while residents near transit 

stations in the suburban areas are also more likely to gain social welfare.  

 

mailto:yantao.h@utexas.edu
mailto:kgurumurthy@anl.gov
mailto:kkockelm@mail.utexas.edu


2 

 

Keywords: Shared autonomous vehicles; first-mile-last-mile; large-scale simulation; public transportation 

 

INTRODUCTION 

The advent of shared automated vehicles (SAVs) may dramatically change the future of public 

transportation system in the coming decade. Studies have demonstrated the benefits and attractiveness of 

the SAV fleets serving door-to-door (D2D) services (Fagnant & Kockelman, 2018), thanks to safety and 

environmental benefits brought by the automated driving system, and the cost savings from the lack of 

drivers on board. These savings are likely to be more when rides are shared by travelers, also called dynamic 

ride-sharing (DRS), to better utilize available seats. In addition to a D2D service, low-cost SAVs may also 

be providing other flexible services in the future, such as offering first-mile last-mile (FMLM) connections 

to transit stations (Farhan et al., 2018; Gurumurthy et al., 2020; Pinto et al., 2020; Shen et al., 2018) and 

serve on new fixed-route fixed-stop transit lines instead of labor-intensive buses that have a higher operating 

cost (Quarles et al., 2020). Although different kinds of SAV services have been discussed separately, 

predictions on integrated public transportation served by SAVs are lacking depth. This paper leverages the 

large-scale agent-based POLARIS tool (J. Auld et al., 2016) to investigate the mode splits, social welfare, 

and network performance across a large region in a fully-integrated manner to understand the impacts of 

deploying various SAV-related services. 

Three main SAV services have been envisioned as a likely future for shared mobility – a D2D service with 

or without DRS, offering FMLM connections to transit, and as low-cost vehicles in a fixed-route fixed-stop 

service. Low-cost operation from eliminating drivers’ wage, smooth vehicle acceleration and deceleration, 

improved safety through the automated driving system, and a centralized dispatch for seamless DRS has 

made SAVs a convenient and expected choice for travel in the coming years. Such a service will 

accommodate induced travel by the elderly and disabled, while having the potential to reduce total vehicle-

miles traveled (VMT) and increase average vehicle occupancy (AVO) through efficient DRS (Childress et 

al., 2015; Gurumurthy & Kockelman, 2018). While this D2D service is convenient and low-cost, without 

sufficient demand for sharing rides the total VMT change may be positive. Several ongoing tests around 

the world (Stocker & Shaheen, 2019) also indicate an initial low-speed geofenced deployment of SAVs 

(Hou et al., 2017). In such situations, SAVs can be leveraged to serve the FMLM connections to transit 

stations, as they provide a more convenient and faster service compared to riding a bicycle and walking to 

transit stations, while releasing the burden and cost of parking a personal vehicle near the transit stations. 

As the technology further matures, SAVs may eventually take the lead in the public transportation system, 

in addition to offering the D2D alternative, through a fleet of heterogeneous vehicle sizes. The bus- or mid-

size SAVs may serve traditional fixed-route fixed- or flexible-stop transit corridors where heavy transit 

demand exists. More importantly, SAVs’ self-relocation centralized via an operator may result in a much 

cheaper and more convenient fleet deployment and management. The fleet operator can manage a large 

fleet and thus lead to an expanded transit service area. 

With the multi-faceted nature of an SAV service, it is essential to investigate each component thoroughly 

and using a common tool to best understand the nuances involved in such a deployment. Shaheen & Cohen 

(2018) noted that infill development brought by SAVs may increase public transportation ridership and 

even transform bus transit to rail transit in urban cores. Lenz & Fraedrich (2016) mentioned that SAVs may 

be better in providing public transport services than conventional buses, since they may be cost-effective 

even in the suburban and rural areas. Although a D2D service may gain mode share from both personal 

vehicles and public transit (Liu et al., 2017), SAVs serving FMLM connections can help increase the 

catchment area for public transit and reduce connection times to transit stations, making public transit more 
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preferred (Huang et al., 2021). Moreover, the traditional transit lines themselves can also benefit 

economically from using SAVs, by replacing existing transit lines or establishing new transit lines using 

these low-cost vehicles. The services that SAVs can provide will compete with existing public transit 

service for travelers with high value of time, support transit by increasing choice riders, while also 

functioning as vehicles in transit lines eventually. Therefore, the mixed role of SAVs within a transportation 

system demand a thorough examination, especially for large-scale networks (e.g., Chicago and New York) 

where the transit use is high.  

This paper analyzes the deployment of SAVs in an integrated transit system in the Greater Chicago region. 

The impacts of the SAV fleets are revealed through mode splits, social warfare, and network performance . 

The recommendations are provided on the prioritization of the SAV services, and how the service should 

be mixed. The rest of the paper is organized as follows. The literature on SAV services is reviewed first, 

followed by the description of the Chicago network data. The POLARIS model is then introduced, including 

how the three SAV services are modeled. Model results and various sensitivity analyses are described, 

before providing the paper’s conclusions and recommendations. 

LITERATURE REVIEW 

Numerous studies on SAVs focus on predicting its impacts under various scenarios, including travel 

behavior, land-use change, increased travel safety, environmental and economic benefits, and traffic 

impacts (Narayanan et al., 2020). Gurumurthy et al. (2019), and Zhao & Malikopoulos (2019) provide a 

detailed summary of recent research on SAVs. Most current SAV studies focus on the D2D service, and 

only a handful have ventured into a discussion on SAVs in a multi-modal network.  

Narayanan et al. (2020) reviewed several articles and concluded that incorporating public transit was 

essential when discussing the use of SAVs. More recently, studies have begun investigating SAVs’ impacts 

on a multi-modal network to reflect a more reasonable real-world application. For example, Snelder et al. 

(2019) explored the mobility impacts of SAVs in a mixed traffic environment, with a novel mode that 

captures demand elasticities and a combination of destination and mode choice models. In an SAV scenario, 

a large modal shift from all modes to SAVs was predicted, given low costs and low passengers’ value of 

travel time (VOTT). Merlin (2017) simulated SAVs and transit in the relatively small Ann Arbor network, 

with a focus on how SAVs will reshape transit. It was anticipated that SAVs are preferred in comparison 

to the current bus transit system due to comparable wait times, shorter travel times, significantly lower costs 

per day and passenger mile traveled, and lower carbon emissions.  

Compared to the case when SAVs only provide D2D service, an integrated SAV fleet and transit system is 

more complicated to model, as it involves multimodality in finding shortest paths across several 

combinations, in addition to seamlessly integrating it to an on-demand service for the first and last mile. 

Moreover, from a demand perspective, public transportation is often not the first choice for travel in most 

U.S. cities, and using SAVs for FMLM connections to existing public transit systems do not appear to be 

as attractive as a direct D2D service. Despite the modeling difficulties and the relatively low interest in 

FMLM use, there are still many studies that quantify SAV impacts when used for FMLM. Yap et al. (2016) 

surveyed detailed traveler preferences for AVs in an integrated public transportation system and predicted 

that AVs had the most potential for first-class train travelers as a last-mile transport between the train station 

and the final destination. Abe (2021) investigated 2,300 Tokyo residents’ preference of using AVs for 

FMLM connections to urban rail transit. Analyses of the survey data showed that FMLM service by AVs 

tend to be favored by those who currently have restrictions in accessing transit, and such a service is more 

likely to substitute for access and egress modes like feeder bus and personal cars, but not for active modes 

like cycling and walking.  

Simulations are typically the preferred tool and can reflect vehicle operations and road congestion well. 

Zachariah et al. (2014) synthesized the New Jersey trip data and simulated a ride-sharing system of SAVs 
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providing FMLM service to train stations. Authors noted that train stations will have a substantial potential 

for rideshare, especially during peak hours, and taking advantage of these spatial and temporal peaks in 

ridesharing demand are likely key to an optimized ride-sharing system. Vakayil et al., (2017) simulated a 

multi-modal transit system that integrates a FMLM service with mass-transit services, considering transit 

frequency, transfer costs, and vehicle relocation. Results indicated up to 50% reduction in congestion and 

vehicular emissions thanks to FMLM service. Gurumurthy et al. (2020) compared an SAV fleet’s FMLM 

service to a D2D service across the Austin region through a 5% sample simulated in MATsim. Pricing 

scheme turned up to be the key factor impacting demand elasticity.  Shen et al. (2018) simulated an 

integrated AV and public transportation system based on Singapore’s mass-transit across a 12 km2 service 

area during morning peak hours. They showed that the integrated system has the potential of enhancing 

service quality, occupying fewer road resources, being financially sustainable, and utilizing bus services 

more efficiently.  

Electrified fleets work even better overall. Farhan et al. (2018) showed how shared autonomous electric 

vehicles (SAEVs) can complement existing public transit services. Results showed great potential for 

leveraging SAEVs to increase transit catchment area, but reduced demand for park and ride infrastructure. 

The simulated SAEV fleet could reduce system-wide VMT by 37% through ridesharing and fast charging, 

which also effectively decreases fleet size and wait time. Scheltes and de Almeida Correia (2017) studied 

the use of SAEVs serving last-mile ride-hailing service of a train line segment in Delft. Even with the high 

preference for non-motorized modes in the Netherlands, they concluded that the SAEV system can compete 

with walking but not with cycling. Their simulated SAEV system was able to reduce average passenger 

travel time and waiting time, especially when pre-booking was allowed. 

While FMLM connections by themselves have shown promise in improving traveler wait times and travel 

times, new transit lines leveraging a SAVs can also be useful to an ailing public transit system. Current 

studies on SAV-based transit lines focus mainly on acceptance (Bernhard et al., 2020; Nordhoff et al., 

2019), but planning and operational insights are still lacking. For example, Mirnig et al. (2020) surveyed 

and concluded that the functionalities of booking and reserving spots in an automated bus have more impact 

on the vulnerable population. Bernhard et al. (2020) explored 942 participants’ willingness to use SAV-

based transit (autonomous minibus called EMMA) offered by a transport company in the City of Mainz, 

Germany. The participants turned out to consider the safety and environmental friendliness of the minibus 

as most important, and the performance expectancy impacted the acceptance of automated public transport 

the most. Moorthy et al. (2017) conducted a cost analysis comparing conventional public transit and a 

hypothetical SAV system for transit between Ann Arbor and Detroit Wayne County Airport, with simplified 

network and vehicle operations. Results showed that the SAV system could provide up to 37% energy 

savings, which is sensitive to vehicle powertrain and ridership parameters. However, this study still focused 

on the FMLM service to the airport, compared to a feeder bus line that already exists, and ignored vehicle 

stopping and routing.  

Only a handful of papers have discussed an integrated transit system with SAV-based transit (Gurumurthy 

et al., 2019; Harb et al., 2021; Narayanan et al., 2020; Zhao & Malikopoulos, 2020). A thorough 

investigation on the operations of an integrated system involving various SAV services is warranted and is 

the prime motivation for this study. 

 

DATASET 

This study simulates vehicle and person movements across the 11,116 sq. mi Chicago region. The large-

scale network has 1,961 traffic analysis zones with about 32,000 road links (Figure 1a) and 33,000 transit 

links (Figure 1b). The daily travel patterns from 2.6 billion travelers from 1 billion households across the 

region are synthesized and validated by Auld et al. (2016), leveraging the CMAP travel survey data.   
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The transit network was obtained as a General Transit Feed Specification (GTFS), and was organized, 

tested and calibrated by Verbas et al. (2018) for the POLARIS model. Four transit agencies are considered 

in the model: Chicago Transit Authority, PACE suburban bus, METRA commuter rail, and South Shore 

Line. The Chicago Transit Authority (CTA) provides service in City of Chicago and 10 surrounding suburbs, 

while the PACE suburban bus serves a larger area, connecting six counties, including Cook, Lake, Will, 

Kane, McHenry, and DuPage (American Public Transportation Association, 2021; Chicago Transit 

Authority, 2016). Since the bus service is the main service from CTA and PACE, the SAVs are assumed to 

replace regular bus service only (excluding bus rapid transit), with adjustments for vehicle size and fleet 

schedules. METRA and South Shore are both commuter rail services, which are assumed to maintain the 

status quo, although there may be expansions in the future under the impacts of SAV use. A total of 349 

unique transit lines are coded into the model, among which 134 lines are from CTA and 202 lines are from 

PACE (Verbas et al., 2018). Buses used for CTA and PACE’s regular bus services are set to have 30 seats 

and a standing capacity for 30 travelers. Considering different departures for each transit line, about 2,100 

routes are assembled to offer 28,000 total transit trips throughout a workday. The bus stops in this chapters 

are considered as “stations”, so the two terms are used interchangeably, recognizing that stations may be 

larger in size and include more bus layover accommodations. 

 

 
 

a. Road network b. Transit network 

Figure 1. Chicago Network 

 

POLARIS MODEL 

POLARIS is a large-scale multi-agent activity-based travel demand model which simulates both person and 

freight trips for a 24-hour day. The model is initialized with a population synthesis module (see Auld & 

Mohammadian, 2010), which includes home, school, and work location choices for synthesized households 

and individuals based on data from U.S. Census tracts, Public Use Microdata Areas (PUMAs),  and  the 

American Community Survey (ACS). With person and household level details known from the synthesis 

step, all activities expected to be made by each agent in the 24-hr period are generated. A hazard-based 

formulation is used to produce start times and durations for each of these activities (Auld et al., 2011). The 

activity plan for each individual agent is then updated to include an activity location (through a multinomial 

logit destination choice model) (Auld & Mohammadian, 2012)  and mode (through a nested logit mode 

choice model for different trip types). The travel scheduling process incorporates four different travel 
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choices, which are the destination choice, mode choice, departure time choice, and travel party choice (Auld 

& Mohammadian, 2011; Gurumurthy et al., 2020). Conflicts among activity plans and travel schedules are 

managed via a conflict monitor in a rescheduling model (Auld et al., 2009). With all trips defined for each 

traveler, dynamic traffic assignment is used for vehicle routing and the link-level congestion is reflected 

through a link transmission model.   

 

Shared Automated Vehicles’ Door-To-Door Service and Dynamic Ride-Sharing 

POLARIS currently allows for D2D solo traveler simulation (Gurumurthy et al., 2020) as well as dynamic 

ride-sharing (Gurumurthy & Kockelman, 2020) and this is fully integrated with all traveler choices and 

congestion feedback. Travelers choose to ride in a TNC through mode choice and request a ride from the 

TNC operator. The operator is aware of all vehicles in the region and their specific locations. This allows 

for centralized dispatch control and helps assign trips to nearby vehicles efficiently. A zone-based approach 

is taken to store vehicles in underlying TAZs for computational efficiency. Although the nearest vehicle is 

not matched, the first available vehicle falling within a pre-defined maximum wait time threshold is 

assigned to maintain acceptable service.  

The dynamic ride-sharing module matches new trip requests to vehicles idling or en route to its pickup or 

dropoff. The match is made such that the request’s destination is along the direction of ongoing travel with 

slight modifications based on the exact operation that is ongoing. If a pickup trip is ongoing, the current 

and ongoing trip is in the same set of TAZs within the pre-defined maximum wait threshold time from the 

use of zone-based storage of vehicles, and is easily matched. If a dropoff is ongoing, and is in the same set 

of TAZs as the new request’s origin, then these trips are bundled. If a dropoff is ongoing and the destination 

is further away, the angle between Euclidian lines of ongoing trip and the request is calculated. The request 

is matched if this angle is within a pre-defined threshold of 10 degrees. This helps manage detour time 

added to the traveler when sharing their ride. Once matched, all requests assigned to a vehicle is ordered 

for minimal Euclidian distances while taking into account pickup-dropoff constraints (i.e., a traveler cannot 

be dropped off before being picked up). The activity-based model in POLARIS currently allows only 

single-party trip requests, so all requests matched to vehicles take up one seat space. In reality, travelers are 

expected to travel in party sizes greater than 1, with their friends and family, so the DRS results can be 

conservative estimates of what is possible when the fleet is deployed. No traveler-side model is used to 

determine sharing choice, so all travelers are subject to share their trips when DRS is allowed. Therefore, 

single-party trips and full sharing adoption is likely to balance out the extremes expected from their 

individual effects. 

 

First-Mile-Last-Mile Modes 

This study focuses on the simulation of first-mile-last-mile modes across several service types. The full 

integration of this new mode involves both supply and demand side changes in POLARIS. On the demand 

side, travelers willing to choose FMLM as a mode need to be identified appropriately based on destination 

and time of day. These trips then need to be routed appropriately by utilizing multimodal shortest paths that 

take into account time-varying travel times and congestion. 

Mode Choice and Feedback Iteration 

The SAV D2D service is assumed to replace the traditional taxi service with adjustments to its cost 

assumptions. The FMLM service is added to the mode choice model as two new modes. One uses SAV 
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FMLM service to access and egress bus transit stations, and the other connects rail transit stations. Rail 

transit in the model includes both commuter rail and light rail. Since SAVs have not been widely deployed 

for FMLM service, there is no revealed preference data to calibrate the utility functions of the two new 

modes. Here, the parameters and variables of the FMLM utility functions are adopted from both the existing 

taxi, bus, and rail modes by considering travel time and cost of both SAV and transit trips, penalties for the 

number of transfers, and also demographic attributes of the traveler. Both SAVs’ travel time for D2D 

service and SAVs’ access and egress travel time for FMLM service are recorded and fed back to the mode 

choice model in following iterations, until the simulation arrives at the equilibrium of mode shares.  

Multimodal Routing 

The FMLM service in the model is considered to use SAVs to connect trips from/to transit stations. These 

routes are calculated based on the multimodal shortest path, which is built based on the shortest link 

prevailing travel times from origin to destination, leveraging network links of all possible types (e.g., 

driving, walking, or transit links). Adjustments and penalties are also incorporated to ensure a reasonable 

multimodal path, including the number of transfers, walking time, and driving distance. As long as a 

multimodal shortest path contains at least one SAV path segment, the trip is identified as a FMLM trip. 

Transfers are allowed between different transit lines, and such transfers can involve either walking trips or 

otherwise, to mimic the case when a person can transfer at the same station or walk to another nearby 

station for transfer. For normal bus and rail trips, in which riders simply walk from/to stations, the station 

can be accessed within about 3 miles of walking distance. However, there is no distance constraint for 

accessing and egressing transit stations using the FMLM service. Although the multimodal shortest path 

algorithm identifies the shortest driving path for SAVs, the actual FMLM service with dynamic ride-

sharing will not exactly follow the shortest driving path, due to some detours of pickups and drop-offs for 

shared rides. This multimodal routing scheme is an extension to the multimodal A* that was already 

implemented in POLARIS (Verbas et al., 2018). 

 

APPLICATION AND RESULTS 

Different FMLM and transit services were simulated for the Greater Chicago region. The baseline scenario 

is the year 2018 Chicago run using 5% of the total synthesized population, which ended up with 201k 

households and 520k persons. The business as usual (BAU) case in Figure 1 shows the mode share for the 

calibrated baseline, in which there are no SAV services but only taxi service is provided. The single-

occupancy vehicle (SOV) dominated the travel mode, followed by the high-occupancy vehicle (HOV). 

Transit travel share were about 5% across the whole area, but significantly higher in the City of Chicago 

(at 30%), while taxi travel accounted for about 4%. There is a $3.3 fare for taxi service, which further 

charges $1.5 per mile. Based on the BAU case, scenarios involving SAVs were designed to have one 

additional SAV service each time, so one can see the incremental changes of the new SAV service brought 

to the whole network. The first change was to use SAV D2D service to replace traditional taxi service 

across the whole region, the second one added SAV’s FMLM service, and the last one further added SAV-

based transit to replaces the regular bus service (CTA and PACE bus lines). All the scenario runs simulated 

a 24-hour weekday, starting from midnight. 

SAV Door-to-door Service 

The first scenario tested SAVs’ D2D service as a replacement for traditional taxi service across the whole 

network. SAVs have the same vehicle behavior as cars or taxis, but charges a lower fare compared to taxis. 

Assuming a future that uses mature automation technology, the SAV D2D service is priced at $0.50 per 
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mile, based on the predictions and assumptions in previous studies (Becker et al., 2020; Bösch et al., 2018; 

Fagnant & Kockelman, 2018). Each SAV was deployed for 40 persons on average across the network, so 

approximately 12 thousand SAVs are in use in the simulated day. The large fleet of SAVs may also lead to 

many households relinquishing their old vehicles and reduce household vehicle ownership. Therefore, 

Menon et al.’s (2019) vehicle ownership reduction model was leveraged to update the new vehicle 

ownership distribution under the impacts of SAV on-demand services. Under the impact of SAVs’ reduced 

cost and the households which lower their vehicle ownership, the SAV D2D services gained more than 10% 

of the mode share (see SAV-D2D in Figure 2), mostly borrowing from the SOV mode. The HOV mode 

share also increased to about 20%, compared to 12% in the baseline scenario, because of the reduced vehicle 

ownership and increased necessity to share rides. 

Table 1 shows the fleet performance of the 12k SAVs serving 5% of the synthesized Chicago population. 

One SAV operated more than 4 hours a day, generating 131 VMT on average by serving nearly 20 requests, 

but 25% of them were just empty travel (i.e., traveling without passengers onboard). The SAV fleet offered 

an average 15-minute service (riding time + wait time) for D2D riders, who rode 4.6 miles on average. The 

average distance corresponds with the trip-length distribution in Figure 3a, which peaks at trips longer than 

0.5 mile but shorter than 1.5 miles. Figure 3a also tells that most riders prefer using the SAV D2D service 

for short-distance trips, but also some prefer sharing long rides that are more than 50 miles in the large 

Chicago region. 

Table 1 SAV Fleet Performance of On-demand Service (SAV-D2D & SAV-FMLM) 

Scenarios SAV-D2D 
SAV-D2D + 

SAV-FMLM 

SAV-D2D + SAV-FMLM 

+ SAV-based Transit 

Avg. Travel Time per Person 

(min per person-trip) 
10.0 min 12.6 12.3 

Avg. Wait Time per Person 

(min) 
4.9 min 4.6 4.3 

# SAV Requests/day 232,247 260,355 259,685 

% Requests Met (with 15-min 

max wait time) 
99.4 98.8 99.0 

AVO by Revenue-trips 1.10 persons 1.13 1.11 

AVO by Revenue-miles 1.05 persons 1.05 1.05 

Avg. Person-Trips/SAV/day 19.4 trips/day 23.6 23.5 

% eVMT 25% 26% 25% 

SAV VMT/person/day 3.03 mi 3.16 3.11 

VMT/SAV/day 131.4 mi 136.9 134.9 

Hours in Operation/SAV/day 4.2 hr 4.4 4.3 
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Figure 2. Mode Splits for Different SAV Scenarios 

SAV FMLM Service 

The SAV FMLM service is incorporated into the simulation when the SAV D2D service is already available. 

Adding an SAV FMLM service on top of a D2D service would not only make up for the gap in previous 

studies that do not incorporate SAV demand to/from transit stations, but also explores the situation when 

the SAV fleet provider and the transit service provider cooperate to form an integrated and more efficient 

transit system.  

The new SAV FMLM service raised the total transit mode share from 5.4% to 6.3% (sum of FMLM mode 

and transit mode in Figure 2, “SAV-D2D + SAV-FMLM” scenario), while the other modes remained quite 

stable. The mode share increment in transit was relatively small, but this is still a good sign for promoting 

transit use and increasing the transit catchment area, especially since this scenario is discussed under the 

availability of the SAV D2D service, which can already be popular for shared mobility. Without SAV D2D 

service, or when the automation technology is not mature enough and SAVs are only capable of providing 

low-speed FMLM service in geofenced regions, more transit demand may be attracted (Huang et al., 2020). 

Since D2D and FMLM requests were both needed to be served by SAVs, the fleet was better utilized, as 

seen from the increased SAV VMT per day and operating hours, as well as more trips served per SAV 

(Figure 1). However, the gain in fleet utilization is small due to the low FMLM share. For the 5% sample 

simulated, there are about 22k FMLM service requests (to/from transit stations), which are 10% of the D2D 

service requests. Interestingly, the travel time is about 2.6 minutes longer per travelers compared to D2D 

service only, due to more trip requests (thus more rerouting), but the wait time is slightly lower because of 

the request aggregation at the transit stations.  
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a. SAV door-to-door service 

 
b. SAV first-mile last-mile service 

Figure 3. SAV Trip Length Distribution 

In contrast to the long average trip length of SAV D2D service, the trip distance of FMLM service was 

shorter, on average, because FMLM service only offered connections to/from transit stations (Figure 3b). 

Most FMLM trips were about 1.7 to 1.9 miles, but there were some FMLM trips longer than 5 miles. Since 

walking to transit stations is usually 0.25 miles on average (Nabors et al., 2008), implementing the FMLM 

service largely increased the transit catchment area. As seen from the low share of FMLM trip distances 

shorter than 1.1 miles, most riders who walk to transit stations will probably retain their previous behavior, 

but a few will shift to the new FMLM SAV service (indicated by the drop in the mode share). Therefore, 

FMLM service will mostly attract those who live from 1.7 to 3.5 miles away from transit stations, which is 

usually beyond the walking distance for accessing and egressing these transit stations. This can also be 

reflected through Figure 4, especially Figure 4b and 4c, that most boardings of FMLM trips happened not 

far from the transit lines. For example, the radial pattern follows the PACE suburban bus and the METRA 

commuter rail, while downtown Chicago is where most of the CTA bus stations are located.  
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a. AM peak (6 am to 9 am) b. Midday (10 am to 3 pm) 

  
c. PM peak (4 pm to 7 pm) d. Night (8 pm to 5 am) 

Figure 4. Boardings of FMLM SAV Service by Four Times of Day 

Figure 4 presents the spatial and temporal distribution of the boardings onto the SAVs which offer FMLM 

service. People are shown to prefer FMLM SAV service in the day rather than the nighttime when few 

buses and rail lines are operating. Midday is the time when boardings happened the most and are more 

spatially spread out. Downtown Chicago is the busy zone for FMLM trips, which can be either first-mile 

or last-mile trips. This also tells that one end of the whole trip (considering both FMLM and transit trip 

segments) mostly occur downtown but the other end is often near the transit lines, especially at those in 

suburban areas.  

Figure 5 further shows the distribution of FMLM trip counts by the hour, while differentiating trips 

accessing and egressing bus stations from rail stations. The trip counts over time follow the pattern in Figure 

4. Few buses and rail lines were operating before 6 am so the SAV use for connecting transit stations was 

rare. The highest peak across the day happened at 9 am, and the second peak happened in the afternoon at 

5 pm. Interestingly, the third small peak happened during the midday at 1 pm, although during midday there 

was a drop after the morning peak hours. The lunch trips are often short so the midday trips are expected 

to be minimal. However, there may still exist several commuting trips or other business trips by travelers 

who work with flexible schedules. Figure 5 also shows that trips to/from rail lines are dominating the 
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FMLM trips, with a ratio of 6 to 1. This is expected because rail trip is often longer, not impacted by the 

road congestion, and has longer access and egress distance compared to bus trips. Therefore, accessing and 

egressing rail stations using the FMLM SAV service may reduce the total trip cost, considering the transfer 

penalties and walk/ride times. However, many bus riders already have one or two transfers between bus 

trips and often have shorter access and egress walking distance, so adding another SAV trip to the whole 

journey would largely raise the transfer burden and, thus, the overall trip cost. In addition, commuter or 

light rail stations often have pick-up or drop-off areas nearby, but this is not the case for every bus station. 

If too many SAVs access and egress bus stops, curbside congestion may be serious, and, thus, more road 

congestion could increase the overall trip cost.  

 

Figure 5. First-mile Last-mile Trip Count Distribution by the hour 

SAV-based Transit Service  

Next, in addition to SAV’s D2D and FMLM service, the scenario discussed in this section further uses 

SAV-based transit service to substitute the regular CTA and PACE bus service with new 15-seat SAVs 

following a doubled dispatching frequency. The 15-seat SAVs also have 15 standing spaces, mimicking the 

current SAV shuttles that are tested around the globe (Stocker & Shaheen, 2019). Since this scenario 

assumes that the SAV’s D2D and FMLM services exist, the SAV-based transit or automated bus (Abus) is 

also assumed to have mature automation technology. The SAV-based transit fare is assumed to be 60% of 

the traditional transit service (Quarles et al., 2020), since Abuses can reduce the operating cost by 

eliminating the need for drivers. 

With a 40% reduced fare for the SAV-based transit service, the mode share of transit slightly increased. 

Similarly, a 5% increase in FMLM mode share was noted (Table 1).  Since most of the FMLM trips were 

connected to rail stations, the fleet performance of SAV’s D2D and FMLM service remained quite stable 

(Figure 2). This means that the SAVs’ on-demand service and the transit-based bus service may not have 

frequent interactions in this case.  

However, there is potential to integrate the Abus service and the FMLM service. For example, the pricing 

of the service can combine the fare for the FMLM and Abus services. The transit use could be promoted if 

the FMLM price is halved when connecting to bus stations, or the transit fare can be eliminated if people 

are willing to take shared rides to access or egress bus transit. More importantly, the utilization of the SAV 

fleet could be improved through self-relocation and shared-use between these two different services. In this 
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paper, the SAV on-demand service (D2D service and FMLM service) uses 4-seater vehicles, while the 

Abuses are 15-seaters with 15 standing spaces. These 4 seat vehicles can sometimes help serve part of the 

existing transit lines or some lines that do not have high demand, while the 15seater SAVs can also help 

cater to demand for on-demand services.  

Welfare Analysis  

Welfare analysis has been widely used to compare the social benefit change across scenarios in terms of 

different policies, like new highway insertion (Kockelman & Lemp, 2011) and congestion pricing (Li et al., 

2020). In this paper, the incremental change in social welfare of introducing different SAV services are 

presented as the changes in consumer surplus. In this study, the changes in consumer welfare or surplus 

(CS) from one scenario to another for each traveler was computed as the logsum differences between 

those two scenarios (de Jong et al., 2007).  

  
a. Baseline vs. D2D b. D2D vs. D2D + FMLM 

 
c. D2D + FMLM vs. D2D + FMLM + SAV-based Transit 

Figure 6. Welfare Change ($/person) 

A person’s consumer plus (CS) is the utility measured as money for a certain choice. If the unobserved 

error term of the utility function is independent and identically distributed (IID) and the utility is linear in 

income, the expected utility is the logsum of the logit choice utilities divided by the marginal utility of cost 
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αp (de Jong et al., 2007). Therefore, the change in consumer surplus for a certain traveler i given a new 

scenario (identified with a superscript 1) with respect to the status quo (identified with a superscript 0), can 

be shown as the following equation: 

𝛥𝐶𝑆𝑖 =
1

𝛼𝑝
{𝑙𝑜𝑔𝑠𝑢𝑚𝑖

1 − 𝑙𝑜𝑔𝑠𝑢𝑚𝑖
0} 

where the logsum incorporate the mode choice utilities.  

In this paper, three different comparisons are conducted: 1) adding SAV D2D service compared to the base 

case, 2) adding SAV FMLM service to SAV D2D scenario with SAV D2D scenario to be the baseline, 3) 

adding SAV-based transit to SAV D2D+FMLM scenario with SAV D2D+FMLM scenario as the baseline. 

Furthermore, ΔCS was aggregated at the TAZ level and averaged across the synthesized population in the 

corresponding TAZs. 

Implementing SAV D2D service increased the social welfare of most people in urban and suburban Chicago 

(Figure 6a). Although the urban area experienced a small increase, many TAZs in the suburban area 

experienced an increase of more than $6 per person per day. This is because the fleet of SAVs improved 

the mobility of the whole area, especially in the suburban area where people used to travel by car and or 

transit. Downtown Chicago has a well-connected transit system, so the welfare increase is limited. Since 

the suburban area and the urban area were the places where most of the shared rides happened, some rural 

areas experienced a welfare loss.  

When further adding the FMLM service, the social welfare in downtown Chicago remained stable (Figure 

6b). This is also due to the well-connected bus and rail transit system, where people sometimes can easily 

replace the FMLM trip with walk and bus trips. However, a more mixed pattern was observed for the 

suburban area. TAZs which experienced welfare increase are more likely to be the TAZs near transit 

stations (e.g., within 3.5 miles). Since the SAV fleet size is fixed, the riders outside the 3.5-mile buffer of 

the transit stations may have longer wait times for SAVs and longer detour times in shared rides, compared 

to the case when only D2D service was provided. Therefore, these people are likely to suffer welfare loss.  

The pattern of the welfare change when adding the SAV-base transit is similar to the case when adding the 

FMLM service. The SAV-based service, which has lower fares and more frequent service but smaller 

vehicle capacity, has attracted more riders, but travelers are also more likely to skip D2D SAVs and wait 

longer at the station due to the small SAV-transitcapacity. The road congestion of the transit corridor may 

also increase due to more SAVs being dispatched. Therefore, a mixed pattern of social welfare change is 

shown in Figure 6c. 

 

CONCLUSIONS 

This study integrates SAVs’ D2D service, FMLM service, and the SAV-based transit service, and reveals 

the possible mode shares, fleet performance, and social welfare change for the 5% population sample across 

the Chicago network. POLARIS was leveraged to simulate the detailed behavior of agents, with novel 

functions added that focuses on the integrated modeling of multimodal routing and the transfer behavior 

between SAVs and transit. Since most of the previous transit-related simulations do not optimize the 

multimodal routing for a mixed-use of SAVs and transit lines, the multimodal routing in this study ensures 

the best routes are considered by taking the travel time,cost, and number of transfers between different 

modes into account.  
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SAV D2D service accounts for 15% of the mode share under the assumption of $0.50 per mile fare and 

households’ willingness to relinquish their vehicle for future years. A fleet of 12k SAVs serving 5% of the 

Chicago population, or 1 SAV every 40 residents , could offer 15-minute service for trips averaging 4.6 

miles. Operating for more than 4 hours, on average, each SAV served nearly 20 requests per day. Most 

SAV riders preferred to use the SAV D2D service for relatively short-distance trips, but the trip could be 

longer than 50 miles given the large nature of the region. Based on the distribution of the social welfare 

change, residents in the suburban area benefited most from the SAV D2D service, followed by those in the 

urban area. When the same SAV fleet offered both D2D service and FMLM service at the same time, the 

SAV fleet was more utilized, by serving 12% more requests per day per SAV with only a 4% increase in 

VMT. The transit use was also brought up from 5.4% to 6.3%, with a stable mode split among other modes 

compared to only using D2D service. The average trip distance of FMLM service was also shorter, most of 

which were between 1.7 to 1.9 miles. This indicated a prominent expansion of the transit catchment area, 

from a typical 0.25-mile average walking distance. The spatial patterns of SAV FMLM service also 

indicated such improvement, as many more boardings were observed in the TAZs along the transit lines 

(e.g., PACE suburban bus and the METRA commuter rail).  Downtown Chicago is also the busy zone for 

FMLM trips, due to the CTA bus service. FMLM service boarding happened mostly across the day, 

especially during morning peak and midday. Trips to/from rail lines  dominated the FMLM trips, compared 

to the bus stations, with a ratio of 6:1. When adding the FMLM service, the social welfare does not change 

much in the downtown area, because of the multiple travel choices. TAZs near transit stations in the 

suburban areas are more likely to have welfare gain. Lastly, when the SAV-based transit service was added 

to the scenario, the performance of the on-demand SAV fleet did not change much since the FMLM service 

mainly focused on connecting to rail. The social welfare change also showed a mixed pattern in both the 

urban and suburban areas. The reason for this is likely to be riders skipping SAVs due to small-size Abuses 

and the road congestion in the transit corridor caused by more frequently dispatched SAVs, although some 

riders enjoyed lower fares and more frequent service. 

Although simulating FMLM in POLARIS yielded interesting and detailed observations, some limitations 

continue to exist and require future work. The FMLM service in this paper only offers access to and egress 

from bus and rail stations, but one would expect longer trips to connect airports. SAVs also have the 

potential to offer more variations of the SAV-based transit, like semi-fixed route service to replace or extend 

existing bus lines with more flexible vehicle sizes and fleet sizes. Therefore, there is a potential to simulate 

a larger integrated system with more realistic considerations for future planning. Different dynamic ride-

sharing strategies can be tested to explore the best one that fits different SAV services in the large-scale 

network, like coordination with transit schedules (Vinet & Zhedanov, 2011) and large travel party size for 

sharing rides. The added mode of FMLM in the mode choice model assumes one alternative-specific 

constant value, which is the average of taxi and the conventional car mode. Sensitivity analysis can be 

conducted to explore the change in the fleet and network performance as well as the social welfare under 

different penetrations of FMLM service.  

Based on the various service options tested here, SAVs can provide promising integration with future public 

transportation systems. The low fare D2D service will be key to reducing vehicle ownership, encouraging 

more shared rides, and gaining social welfare in the suburban area, while the FMLM service can increase 

transit ridership and catchment area. The SAV-based transit will also offer a cost-efficient service, and the 

network and fleet performance may be improved through integrations with on-demand service fleet and 

new pricing strategies. 
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