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ABSTRACT 

Transportation Network Companies (TNCs) have been steadily increasing the share of total trips 

in metropolitan areas across the world. Micro-modeling TNC operation is essential for large-scale 

transportation systems simulation. In this study, an agent-based approach for analyzing supply and 

demand aspects of ride-hailing operation is done using POLARIS, a high-performance simulation 

tool. On the demand side, a mode-choice model for the agent, and a vehicle-ownership model that 

informs this choice, is developed. On the supply side, TNC vehicle-assignment strategies, pickup 

and dropoff operations, and vehicle repositioning is modeled with congestion feedback, an 

outcome of the mesoscopic traffic simulation. Two case studies of Bloomington, Illinois and 

Chicago, Illinois are used to study the framework’s computational speed for large-scale operations, 

and the impact of TNC fleets on a region’s congestion patterns. Simulation results show that a 

zone-based vehicle-assignment strategy scales better than relying on matching closest vehicles to 

requests. For large regions like Chicago, large fleets are seen to be detrimental to congestion, 
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especially in a future where more travelers are using TNCs. From an operational point of view, an 

efficient relocation strategy is critical for large regions with concentrated demand, but not 

regulating repositioning can worsen empty travel, and, consequently, congestion.  The TNC 

simulation framework developed in this study is of special interest to cities and regions, since it 

can be used to model both demand and supply aspects for large regions at scale, and in reasonably-

low computational time. 

Keywords: Agent-based modeling, ride-hailing, shared autonomous vehicles, large-scale, 

integrated demand-and-supply modeling. 

BACKGROUND 

Transportation Network Companies (TNCs) are now an established, and convenient, 

transportation mode in metropolitan areas. Such services provide door-to-door transportation 

through traveler requests and traveler-driver interaction mediated by smartphone applications (1). 

The prevalence of these services will likely increase with the emergence of autonomous vehicles 

(2)(3)(4)(5), with TNCs serving riders with a fleet of shared autonomous vehicles (SAVs). 

Modeling and simulating such services is, therefore, essential for forecasting their impact on the 

transportation system in forthcoming years. 

Recent research has explored the potential impacts of TNCs from an operations perspective, 

especially while considering an SAV fleet. Two studies, one with a hypothetical grid network (3) 

and another for Austin, Texas (6), found that one SAV can replace around 10 conventional vehicles 

with a reduction in total vehicle-miles traveled (VMT) with pooling, or dynamic ride-sharing 

(DRS). A Singapore study simulated taxi trips as SAVs and found that one-third of the existing 

fleet was sufficient to meet the demand (2). Rising VMT was found to be a concern, which is 

especially true with induced demand. A larger replacement rate was found in Stockholm, reaching 

20 vehicles when DRS was employed (7). In Berlin, researchers simulated a fleet of 100,000 

vehicles which was able to serve all trips previously performed by 1.1 million private cars (5). The 

same study also found an increase of 17% of the time spent in completing those trips. A Lisbon 

study simulated SAVs with different seating capacities to compare mode share changes (8). Using 

4-, 8-, and 16-seaters, the authors observed the impact that solo travel and sharing rides had on the 

network when transit and walking modes were available. Large average vehicle occupancies 

(AVO) of 2.0 for 4-seaters, 4.2 for 8-seaters, and 11.4 for 16-seaters were accompanied with 20-

40% VMT savings. The strategy to match vehicles to travelers was perceived as the key factor in 

reducing empty VMT (eVMT) and travelers’ waiting time. Another study tested and compared 

several real-time dispatching strategies (9). The method was applied to the City of Chicago, USA, 

where taxi data is available. The optimization-based schemes fared better among all strategies, and 

the share of eVMT was about 20%. Similarly, the use of short-term demand forecasting with smart 

SAV relocation to meet anticipated demand has been studied (10). Their study helped show that 

even spatially aggregate forecasts of high quality help improve SAV performance. Two Austin-

based studies pursued the impact of pricing SAVs and other modes with assumptions on rich 

information available from using AVs, concluding that for Austin, Texas, pricing with, and 

without, DRS helped curb the increase in VMT, but could not show considerable savings (11)(12). 

An interface has been created using the multi-agent simulation tool, or MATSim (15), to test SAV 

operations uniformly across case-studies (13)(14), with the only drawback of using a fixed demand 

and itinerary for every agent to begin with. Although the studies mentioned so far modeled SAV 
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operations in detail, the anticipated change in traveler behavior with SAVs was not incorporated 

in sync with SAV operations forecasting.  

Travel behavior has typically been studied only with stated-preference surveys due to minimal 

data provided by TNCs, and the lack thereof for a non-existent future scenario. A survey with 

riders found important differences between taxi and ride-hailing travelers (16). Their results also 

showed that the increase in TNCs’ mode share was occurring at the expense of other transportation 

modes.  Key characteristics of SAV users were captured in another survey (17), finding that they 

were largely young, well-educated adults who had higher income, which was corroborated by (18) 

for TNC use. Higher ridership was observed in high-density areas as expected. Suburban 

population and older people were found to be less likely to adopt AVs (19), be it for ownership or 

for use in SAV fleets. Another survey studied the traveler behavior in terms of privacy and 

willingness to use DRS, and found that people are expected to be comfortable with DRS in the 

future (20). These aspects should be taken into account when forecasting future TNC ridership, in 

sync with SAV operational performance. 

Many previous studies have highlighted the importance of integrated modeling in transportation 

(21)(22)(23)(24), but despite increasing literature in the area, very few studies have modeled TNC 

operation with explicit models for both demand and supply. The mobiTopp framework can be used 

to jointly model demand and supply aspects at the zone level (25). Their SAV simulation for 

Stuttgart, Germany, showed considerable VMT savings potential. Congestion effects on the links 

are not observed, and the SAV framework did not allow vehicle repositioning, which may reduce 

some of the savings but may be used by SAV fleet operators to maximize revenue. A study  using 

MATSim incorporated an individual’s willingness to use SAVs and user trust, and compared it 

with the in-house mode-choice model that uses a co-evolutionary algorithm and some randomness 

(26). This France-based study showed that incorporating the demand-side model considerably 

impacted the demographic for SAV use bringing more realism to the model. SimMobility is able 

to integrate supply and demand fully, and was used to compare current TNC operation with an 

SAV fleet for Singapore (27)(28), with results showcasing a benefit from centralized control. 

However, no study has been able to integrate supply and demand while being able to study a 24 hr 

simulation at scale (i.e., full population). The scale of analysis has especially been found to be of 

relevance for SAV operation when considering pooling (29). 

This paper presents an agent-based approach for analyzing the operational aspects of TNCs at 

scale, while also using demand-side models to improve forecasting accuracy. The package is built 

on the top of the agent-based tool POLARIS (30) and integrates both demand and supply aspects. 

On the demand side, a vehicle ownership model is used at the household level to distribute vehicles 

based on household characteristics. A vehicle fleet distribution model takes care of the percentage 

of human-driven vehicles and AVs in the simulation. Cost of travel in a TNC vehicle and outcomes 

of the vehicle ownership and fleet distribution models inform the mode-choice model for a traveler, 

and this is repeated in a cycle for convergence. On the supply side, trip travel times and congestion 

effects are an outcome of the mesoscopic traffic assignment model, which also takes care of transit 

schedules and TNC vehicles for an integrated operations simulation. The implementation is 

generalized so that current TNC operation and future SAV systems can both be simulated. 

The remaining sections of this paper are organized as follows: the agent-based model, POLARIS, 

and underlying principles are introduced next, followed by the methodology used to model TNCs 
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and SAVs, then concluding with the analysis conducted using two case studies, their results and 

discussion. 

THE AGENT-BASED MODEL – POLARIS 

The evolving complexity of travel behavior and transportation networks have led to the integrated 

modeling of travel demand and network supply as opposed to the traditional sequential process.  

In particular, agent-based models capture these interactions on the perspective of co-evolving 

agents that engage in activities (demand) based on time-dependent travel times using the different 

modes available (supply). The travel times, in turn, are an outcome of all the agents’ decisions and 

the congestion effects in the network. Therefore, in these tools, demand and supply are mutually 

dependent as opposed to traditional four-step modeling. The sequential process practiced widely 

by many metropolitan planning organizations misses the interaction between demand generation 

and supply, and they will have to eventually shift to using tools like MATSim (15), SimMobility 

(31) or POLARIS (30) . In this study, POLARIS was extended to micromodel TNC operations. 

POLARIS is a high-performance, open-source, agent-based modeling framework that can simulate 

large-scale multi-modal transportation systems at a mesoscopic level that includes 100% of the 

population as agents in the model. It features integrated travel demand, network flow, and a traffic 

assignment model in which key aspects of travel decisions (activity planning, route choice, and 

tactical-level driving decisions) can be modeled simultaneously, and, in a continuous, fully 

integrated manner.  

The activity models adapted from existing research  controls each traveler’s decision-making 

process for within-day, mid-term, and long-term  timeframes taking into account activity types, 

and preferred modes and destinations (32)(33). The mid-term and within-day travel behavior 

decisions include the process of individual activity episode planning and engagement. These 

decisions are constrained by long-term choices regarding home and workplace choice, and 

household vehicle choices, and, in turn, these influence activity and travel planning, and 

realization. 

The traffic flow model uses a mesoscopic representation of vehicles’ movements based on 

Newell’s kinematic wave model (34), with updates that represent interactions with traffic control 

infrastructure (35). The traffic flow simulation works seamlessly with a dynamic traffic assignment 

(DTA) algorithm (36) that assign routes to individual vehicles using a time-dependent A* shortest 

path router (37) based on the prevailing traffic condition, as well as updated skim travel times. 

Traveler’s routing behavior from large delay is also captured by allowing re-routing. Effect of ITS 

infrastructure (30) and information mixing (36) on travel demand and behavior has also been 

incorporated, and the flow model takes into account connectivity and automation to observe likely 

behavior by personal AVs in the future (38). This functionality is inherited for the TNC model for 

futuristic SAV simulation. POLARIS also provides functionality for microscopic transit 

simulation. Transit lines and schedules in a region are simulated with capacity truncation in transit 

vehicles. Traveler and transit-vehicle interaction is captured for boarding and alighting, and trip 

delays take into account real-time transit movement based on congestion on the network through 

an iteratively-updated travel-time skim. The array of supply- and demand-side models in 

POLARIS, paired with low computational times, make it a suitable choice for large-scale TNC 

fleet simulation. 
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TNC FLEET SIMULATION 

TNC fleets are modeled jointly from both the demand and supply perspectives in POLARIS. The 

demand side takes care of TNC request generation using a household vehicle ownership model 

and a mode-choice model that takes into account fares and travel times to identify the preferred 

mode. For the supply, TNC vehicle operation is modeled through two main components: the TNC 

fleet operator and the TNC vehicle. The demand and supply aspects of the TNC simulation used 

in this study are explained in detail next.  

TNC Demand: Vehicle Ownership, Mode Choice and TNC Requests 

Mode-Choice Model 

POLARIS uses three separate mode-choice models depending on the activity purpose: home-based 

work/school, home-based other and non-home based, similar to traditional modeling. The nested-

logit formulation used to model mode choice include nine modes: drive alone, TNC use, ride as 

passenger, walk, bike, bus with walk access, bus with drive access, rail with walk access, and rail 

with drive access. Among these, drive alone and TNC use are grouped under the auto nest, and the 

two rail modes are grouped under the rail nest, as shown in Figure 1. The model includes a variety 

of demographic variables, accessibility information, as well as level of service (LOS) variables. 

The demographic variables include individual demographics such as education, employment 

status, possession of driver’s license, and household demographics such as household income, 

household size, and vehicle and bike ownership among others. Road-network density and activity 

density of the destination zone are used to capture the characteristics of land use and the 

transportation network. The TNC-specific LOS variables used in the model include in-vehicle 

travel time and wait time (obtained from the simulation), and input fare. The TNC fare comprises 

of a fixed cost per trip, a distance-varying component, and a time-varying component. The model 

is developed and calibrated against the household travel survey data collected from the local 

region’s metropolitan planning organization. 

  

 

Figure 1 Nested-logit mode choice structure used in POLARIS 

 

Vehicle-Ownership Model 

Household vehicle ownership is expected to change in response to high penetration rate of TNCs. 

To account for the change in a household’s vehicle ownership, a household vehicle-disposal model 

TNC 

TNC 
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is implemented in POLARIS, in addition to the baseline vehicle ownership model. Two separate 

ordered-probit models are implemented to capture the vehicle-disposal propensity of one- and 

multi-vehicle households, respectively (39). The ordered-probit models quantify the household’s 

likelihood of disposing vehicles from the existing household vehicle fleet. Consequently, the 

vehicle count is reduced for the households that express high likelihood of relinquishing their 

vehicle in response to increased penetration of TNCs. A random draw from a triangular distribution 

of unit base is used to determine the exact number of vehicles discarded by multi-vehicle 

households. The ordered-probit model uses a variety of demographic characteristics of the 

household (such as household size and income), as well as information of the primary driver in the 

household (such as gender, ethnicity, and education status). Travel characteristics such as the 

average travel duration on a regular day, and time spent in searching for parking are also included 

in the model. The model is sensitive to TNCs’ service characteristics such as fare and fleet size. 

Accessibility of a household’s location is also used to capture behavior leading to households 

located near urban core being more likely to give up vehicles compared to the households located 

in the suburbs, and is depicted in Figure 2 for Chicago, Illinois. The accessibility is calculated for 

each zone based on how attractive a destination zone is in terms of activity opportunities (e.g. 

government offices, service opportunities, manufacturing, retail and industrial opportunities) 

weighted by the travel time between the origin and destination zones. Activity opportunities at a 

zone farther away from the origin zone are weighted less favorably compared to the activity 

opportunities provided by a zone closer to the origin zone. Hence, in the simulation, a household 

having good (poor) accessibility score indicates that the household has good (poor) access to zones 

with favorable activity opportunities. 

 

 

 

Figure 2 Distribution of households discarding vehicles in response to high TNC penetration 

in the Chicago region 

TNC Supply  
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The TNC operator and TNC vehicle are modeled to mimic operations which are currently observed 

from a consumer’s perspective. The operator assigns requests centrally to individual vehicles 

depending on the assignment strategy and monitors demand-to-supply ratio to determine if 

repositioning is required. The TNC vehicle executes the pickup, dropoff and repositioning tasks 

depending on the instruction received from the operator. The TNC vehicle is able to store requests 

that are being executed and those that need to be executed in the future. 

Assignment Strategy 

When a TNC trip request is made, the fleet operator attempts to assign it to the closest available 

vehicle in order to reduce total eVMT, as well as to minimize the traveler waiting time. Two 

assignment strategies are included in POLARIS: a coordinate-based search and a zone-based 

architecture. The coordinate-based search utilizes vehicle coordinates which are updated 

continuously throughout the simulation to create an R-tree (40). The R-tree improves spatial 

searches, and, therefore, the coordinates of an incoming request can be used to find the closest 

vehicle assessed using the Euclidian distance and the R-tree structure. Despite R-tree being an 

efficient spatial data structure, it may have some drawbacks. The Euclidian distance may not 

necessarily reflect the travel times between vehicles and requests since mean speeds vary along 

different routes in the network depending on congestion and network characteristics. Another 

aspect critical in large-scale simulations is the computational burden. R-tree’s insertions, deletions, 

and queries take considerably more time compared to basic data structures (on the order of 

milliseconds compared to microseconds for the latter). However, this does not significantly grow 

with fleet size for individual operations. While this is not an issue to simulate present-day TNC 

systems that enjoy a relatively small share of trips, it may be significant for future scenarios in 

which millions of trips are potentially served by SAV fleets.  

In order to account for this, an adapted version of the zone-based structure in (5) is implemented 

to be able to simulate large-scale scenarios with a reasonably-low computation time. The zone-

based architecture is generated using the traffic analysis zones (TAZs) which is included in 

POLARIS. The TNC operator constructs an array of all neighboring zones, for each zone in the 

region, in ascending order of free-flow travel times defined with respect to a reference zone. This 

array is truncated using a predefined threshold for wait times so that a minimum level of service 

is maintained by the TNC service. By definition, the first zone in each array is the reference zone 

itself, which would mean minimal wait time. When a trip is requested, the operator checks for any 

available vehicle, starting from the origin zone and in the same order defined by the array, and 

assigns an unoccupied vehicle from the first neighboring zone that has a vehicle available. Since 

vehicles in these arrays are stored with longest-idling vehicle first, they need not be the closest 

available vehicle, but are expected to serve the request in reasonably less time.  

Vehicle Operation 

Once the request is assigned, the TNC vehicle handles the remainder of the request. Each vehicle 

stores a sorted list of tasks to be performed. A pickup and a dropoff operation is added to this list 

for every request assigned to the vehicle. Each task in the list involves the vehicle moving between 

its location to either the pickup point or the dropoff point. Depending on the task, the 

vehicle identifies the path from its current location to the next operation location. At the end of 

each trip, the total trip distance, travel time and empty travel, are computed and recorded. At the 

vehicle’s destination after dropoff, the vehicle may receive a new set of tasks and repeat the same 

process again. If there is no task to be performed, the vehicle stays idle at the last task’s destination 
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and awaits new trip assignment. Without DRS, only one task is executed at a time to speed up the 

assignment process, which only uses available vehicles (i.e., those that are idle).  

Repositioning 

Depending on the pattern of origins and destinations of incoming trip requests, there can be an 

uneven spatial distribution of the TNC fleet. The TAZs that have more trip beginnings tend to not 

have vehicles close to them to serve the incoming demand. Conversely, areas that are common 

destinations, but with a dearth in trip beginnings, have a concentration of vehicles. These vehicles 

will probably wait a long time to be assigned a new trip, and the consequent eVMT is likely to be 

long. Therefore, vehicles also need to be able to perform repositioning trips in addition to pickup 

and dropoff tasks. 

The repositioning strategy in this study is undertaken in a decentralized manner, with vehicles 

performing repositioning trips based on their current location, and demand (number of requests), 

and supply (number of vehicles) aggregated at the TAZ level. The number of requests per TAZ is 

averaged over a pre-defined moving time-window, K. Based on the demand and the fleet size, S, 

a desirable number of vehicles per zone is computed as: 

 

𝑑𝑖 =
𝐷𝑖+𝐴𝑖

∑ (𝐷𝑗+𝐴𝑗)𝑗
𝑆, 

where, 𝑑𝑖 is the desired number of vehicles on zone 𝑖, 𝐷𝑖 is the number of requests in the same 

zone, 𝐴𝑖 is zone specific constant to a. Here, we set 𝐴𝑖 to be proportional to the area of the zone, 

so that for low demands (𝐷𝑖 << 𝐴𝑖), the repositioning strategy attempts to distribute the vehicles 

evenly in the network. For high demands (𝐷𝑖 >> 𝐴𝑖), the distribution will be proportional to the 

past demand. Similarly, the supply of a zone, 𝑠𝑖, is computed by counting the vehicles that is either 

idle in that zone 𝑖 or serving requests in which the scheduled last dropoff is at zone  𝑖. 

Based on the zone’s desired number of vehicles, 𝑑𝑖, and supply, 𝑠𝑖, the repositioning decisions are 

undertaken. Vehicles in zones with ratio 𝑟𝑖 = 𝑠𝑖 − 1/𝑑𝑖 > 1, consider repositioning to zones in 

which the ratio 𝑟𝑖 is lower than 1. To reduce computational time, a subset of potential destination 

zones are considered as opposed to verifying every potential destination. The specific zone that 

the vehicle repositions to is selected proportional to the following score: 

  𝑢𝑖 =
1

𝑟𝑖𝑡𝑖
, 

where, 𝑡𝑖 is the predicted travel time from the vehicle current location to the destination. This 

probabilistic assumption is made to resemble the current TNC operation, and to serve as baseline 

for more sophisticated strategies in the future. 

CASE STUDY AND RESULTS 

The TNC model implemented in POLARIS comprises of several moving parts. There are two 

assignment strategies modeled, which can be compared for computational burden in large-scale 

simulations. Traveler interaction with TNC vehicles shows the fleet’s level of service, and the 

TNC operation, of a TNC operator controlling a fleet of vehicles, can be studied to observe the 

impact on system VMT and induced congestion from eVMT. On the demand side, interest in TNC 

use based on vehicle-ownership and vehicle-disposal models and TNC use-costs helps understand 

the future of such a service.  



Gurumurthy et al. 

9 

 

The demand and supply perspectives implemented in this paper were tested using two case studies 

for Bloomington and Chicago in Illinois, United States. The two regions are a few orders of 

magnitude apart in terms of spatial extent, population, travel demand, and network complexity, 

making them good test beds. Bloomington houses about 120,000 people who make around 614,000 

person-trips. On the other hand, the Chicago region is home to about 10 million people who make 

27 million person-trips. Figure 3 shows the Bloomington network, which consists of about 4,000 

links and 3,900 nodes, next to the Chicago network, which has about 31,000 links and 19,000 

nodes. 

 

Figure 3 Bloomington and Chicago networks in Illinois, USA 

Computational Burden and Effect on Wait Time 

The smaller region of Bloomington was used in comparing the computational burden of TNC 

vehicle-to-request assignment for the two strategies that were modeled. The lower run time 

allowed simulation of multiple combinations of fleet sizes and maximum threshold wait times, 

which are important inputs to these strategies. In the present-day context, about 2-3% of all person-

trips in Bloomington are made using TNCs and taxis. Fleet sizes varying as 1 TNC vehicle for 

every 75, 150, and 300 residents, were tested using the coordinate-based search and zone-based 

architecture, defined earlier. Since the zone-based architecture is created based on the threshold 

wait time allowed, wait times of 10, 15 and 20 min were simulated. The cumulative time taken in 

seconds for assignment is reported for each scenario, and the impact of these strategies on average 

wait time are discussed. 

Figure 4 (a) illustrates the computational burden of each vehicle-assignment strategy implemented 

using simulations for Bloomington. R-tree has a significantly higher fixed computational cost, 
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about twice that of the zone-based architecture implemented. This only increases with fleet size 

although the average wait time is lowered by assigning closest vehicles to requests. The zone-

based architecture performs equally well when taking into account the computational cost. 

Average wait times differ by less than a minute even when using this architecture as depicted in 

Figure 4 (b). The size of TAZs may play an important role in the effectiveness of the architecture, 

but was not analyzed since they were obtained from the local metropolitan planning organization’s 

travel demand model. 

 

Figure 4 Computation and traveler wait times for each vehicle-assignment strategy  

Large-Scale Impacts from Repositioning 

The larger region of Chicago was studied to validate the micro-modeling of TNC operations at 

scale. Fleet sizes of 1 TNC vehicle for every 25, 35, 50, and 100 residents, were tested for present-

day conditions, and two levels of future reduction in vehicle ownership informed by the 

implemented model. The scenarios tested here are named A1-A4 for smaller change in vehicle 

ownership in the region, with 1-4 denoting increasing fleet size, or decreasing fleet availability. 

Similarly, B1-B4 denote the larger change in vehicle ownership that will considerably increase the 

demand for TNCs. The zone-based architecture was used for the assignment strategy with a 

maximum wait-time threshold of 30 min. Repositioning of TNC vehicles was allowed to occur at 

10-min intervals based on the demand-supply balancing algorithm with the time-window of 4-

hours for averaging trip requests. The average wait time, percent TNC trip requests served, percent 

eVMT and rVMT, and average trips made by each TNC vehicle is reported to analyze the impact 

of such fleets on the system. 

Results from the large-scale simulation of the Chicago region were obtained from running 

POLARIS on a desktop with two Intel Xeon processors, each with 6 cores, running at 3.4GHz and 

having access to 128 GB of RAM. The convergent simulation of the Chicago travel demand model 

with TNC vehicles takes about 8 hours on the machine described with repositioning enabled. Table 

1 summarizes the fleet characteristics for all the scenarios tested. In all the scenarios analyzed, 

there are trips unserved even when there is a higher vehicle availability. Most of the unserved 

requests occur during the morning peak as can be observed from Figure 5, which depicts the 

temporal distribution of the unserved requests across the different scenarios. In the morning peak, 

there is high demand of requests originating in the suburbs by travelers wanting to go to the central 

areas, causing an outflux of vehicles from that area. In addition to this, a reposition trip tends to be 

long as these areas are sparse. This explains the higher percent rVMT observed as fleet size 

increases across cases A and B.  
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The VMT in repositioning and pickup trips is a critical aspect of TNC/SAV operation as the 

vehicles travel empty (or without any customer), referred to as eVMT in this paper. Across 

scenarios A and B, the eVMT as a percentage of VMT stayed around 40%, with the exception of 

the base scenario. In the present-day context, TNC vehicles serving trips across the region were 

found to have about 41% eVMT by (41). As the repositioning strategy resembles the current TNC 

operation (with driver/vehicle driving to high demand areas without a central coordination), results 

in this study were close. In the base scenario, this share was higher as more vehicles were available 

to take long repositioning trips to suburban areas, which caused the base case to have the highest 

share of repositioning VMT (rVMT) across all scenarios. A more sophisticated repositioning and 

assignment strategy could potentially reduce both eVMT and rVMT. Additionally, there are 

maximum savings of about 2% in total vehicle hours traveled (VHT) in the A scenarios and a 

maximum of about 22% in the B scenarios. However, these savings may be higher if smaller fleets 

are more efficient. Large fleet sizes decrease saved travel times, especially when the mode share 

of single-occupant vehicles is high, like in scenarios A3 and A4. 

Across both future scenarios of change in vehicle ownership, the TNC availability and percent 

rVMT was seen to be an influential factor in large percent eVMT values. Larger the TNC demand, 

the more imperative that regions regulate TNC fleet sizes. Small fleets are able to be more efficient 

with high average trips made per vehicle per day when there is higher demand, serving trips with 

similar average wait times. This becomes clear in Figure 6, which shows the share of vehicles 

performing different operations or is idling. Figure 6(a) shows the shares for cases A1 and A4, 

while Figure 6(b) shows the same for scenarios B1 and B4. For the smaller fleets (dashed lines, 

cases A1 and B1), most of the vehicles are either performing pickup or dropoff trips and the share 

of idle vehicles are small throughout the day. As the fleet increases, there are more idle vehicles 

and some of these vehicles are able to perform repositioning trips to other areas of the network. 

Table 1 TNC Fleet Impacts by Size and Demand 

Sc. 

TNC 

Availability 

(1 for x 

residents) 

#TNC 

Trips 

per 100 

residents 

% 

eVMT 

(% of 

SAV 

VMT) 

% 

rVMT 

(% of 

SAV 

VMT) 

Avg. Trips 

per TNC 

vehicle per 

day 

Avg. 

Wait 

Time 

(in min) 

% 

Served 

Trips 

Base 35 10 trips 49.0 36.0 6.7 7.9 97.1 

A1 100 

38 trips 

43.0 10.0 26.3 13.4 70.5 

A2 50 41.4 19.3 17.1 9.8 89.6 

A3 35 42.3 24.6 12.7 8.5 93.7 

A4 25 44.6 29.1 10.3 8.1 95.6 

B1 100 

65 trips 

44.2 8.1 32.1 13.2 50.1 

B2 50 40.6 11.0 25.6 11.9 79.4 

B3 35 39.8 17.2 19.7 9.3 90.0 

B4 25 40.9 21.7 15.5 8.4 93.1 
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Figure 5 Percent requests unserved by time-of-day across scenarios 
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Figure 6 Share of vehicles performing pickup, dropoff, repositioning trips or idle by time of day 

for scenarios (a) A1 and A4, (b) B1 and B4. 

CONCLUSIONS 

Ride-hailing use has seen exceptional growth, and this is only expected to increase exponentially 

with AVs in the mix. TNC operation is implemented in POLARIS in this study, to simulate the 

interaction between TNC vehicles, travelers, and the network, accurately, and to allow for different 

operational strategies. This supply model is integrated with the demand side by modeling TNC 

requests at the household level depending on vehicle ownership and a mode-choice model. The 

framework supports simulation of large regions at scale in reasonably low computational time. 

A case study for Bloomington, Illinois is used to show that a heuristic vehicle-to-request 

assignment strategy compares well with the closest vehicle search using a specialized data 

structure. The zone-based architecture is faster, and insensitive to the fleet size at the expense of a 

marginal increase in pickup distance and pickup travel time. Overall, both strategies lead to similar 

wait times, depending only on higher TNC vehicle availability to lower traveler wait times. Despite 

being effective, the closest vehicle search would significantly increase the computational time with 

millions of trips being assigned in quick succession. The zone-based implementation is then 

validated for large-scale use by simulating travel in Chicago, Illinois. Results from this analysis 

reveal that repositioning may be the reason behind lower eVMT reported in the literature. Although 

the algorithm to balance demand and supply implemented here is a heuristic, fleet sizes need to be 

regulated for anticipated changes in TNC demand so as to keep added VMT in check. This 

anticipated change in demand, replicated here using a vehicle disposal model informs regions 

regarding the concentration of new demand in urban cores, where households are likely to own 

fewer vehicles. Percent eVMT was around 40% across all scenarios, and the percent rVMT 

increases as the fleet size increases, irrespective of demand. A small, but non-zero, percentage of 

TNC demand was not served even when employing larger fleet sizes. The unserved trips are 

concentrated in the morning peaks, and in suburban areas. 
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The methodology here is a step forward in integrating demand and supply for large regions. There 

were some key drawbacks that were observed during the analysis. On the demand side, TNCs 

operate based on drivers for-hire, serving as contractors, who drop in and dropout of working for 

the TNC during different times of the day. A constant fleet assumption modeled here can be 

improved using time-dependent fleet sizing based on dynamic pricing. Similarly, a thorough TNC 

demand model needs to include human tendency for cruising similar to (28). Once pooling is 

modeled, a choice dimension for choosing to pool can also improve realism and is ongoing work. 

On the supply side, the zone-based architecture implemented relies on the underlying framework 

of TAZs that is typically used by local metropolitan organizations. They are not uniformly 

distributed across a region, and this can play an important role in the effectiveness of this 

assignment strategy. The repositioning of trips using a demand-and-supply balancing algorithm is 

a heuristic that does not take into account a maximum distance or travel time that a repositioning 

trip should last. When this is combined with an ineffective TAZ size, it can lead to larger than 

usual levels of repositioning. DRS options that are offered by TNCs, nowadays, can save travelers 

some money and help lower congestion, but was not explored in this study. Similar evaluations, 

as done in this study, needs to be performed along with modeling DRS. Results originating from 

using heuristics that are used here needs to be compared with optimization-based strategies for 

vehicle-assignment and repositioning for a TNC/SAV fleet operation as it can significantly impact 

eVMT and VHT. These are out of the scope of this study, but are in the works. 
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