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Abstract 

The emergence of on-demand shared autonomous electric vehicle (SAEV) service requires careful 

charging station planning and a joint charging and repositioning strategy to mitigate empty travel. 

This study couples charging and repositioning events as a means of improving service quality 

(rider wait times), reducing empty travel due to repositioning or charging, and improving fleet 

utilization (average daily trips per vehicle and charging queues). This synergy is explored for the 

Austin, Texas region using POLARIS, an agent-based model. On average, wait times were 39% 

lower, and average daily trips served per SAEV increased up to 6.4 (or 28%) compared to SAEV 

repositioning with heuristic charging. Coupling repositioning with charging decreased the fleet's 

percent empty travel on average by 1.6% relative to the scenario treating them as independent 

events (varies by charging station design). Sparser charging stations reduce investment costs, and 

operators can leverage this framework to keep average wait times down. 

Keywords: Shared Autonomous Electric Vehicles, Repositioning, Charging, Charging 

Infrastructure, Agent-based Simulation, POLARIS 

 

1. Introduction 

 The future of transportation may be electric, automated, and shared (the "3 revolutions") 

(Sperling, 2018). Innovations around these dimensions may significantly impact urban form, 
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energy use, and daily life. In a world where all three converge, households may rely on shared 

autonomous electric vehicles (SAEVs) to provide convenient door-to-door service or first-mile 

last-mile connections with line-haul public transit (Narayanan et al., 2020). The latter is of 

particular interest to public transit agencies as on-demand SAEVs could replace low-usage fixed-

route local buses, provide free transfers to line-haul services, and pass on savings from expensive 

paratransit services to expand mobility subsidies or reduce fare transit passes (Shaheen and Cohen, 

2020). Sharing vehicles may lower parking demand, and if rides are shared (via dynamic ride-

sharing), congestion from low-occupancy vehicles may fall. Less demand for travel lanes and 

parking spaces may allow cities to reclaim land for other purposes (e.g., non-motorized modes, 

outdoor dining, or green infrastructure) (González-González et al., 2020; ITF, 2018; Zhang et al., 

2015). Since SAEVs offer lower per-mile costs relative to present-day ride-sourcing, due to 

automation replacing drivers and lower lifetime costs from an electric powertrain (Becker et al., 

2020; Bösch et al., 2018; Fulton et al., 2020; Johnson and Walker, 2016), affordable clean mobility 

may alleviate persistent transportation-related inequalities that burden low-income neighborhoods 

(Apte et al., 2019; Cohn et al., 2019; Niles and Pogodzinski, 2021; Wadud et al., 2016). On the 

other hand, potential gains in access are expected to add empty vehicle-miles traveled (VMT), 

which if left unregulated, could worsen congestion across cities (Fagnant et al., 2015; Fagnant and 

Kockelman, 2018; Gurumurthy et al., 2021a; Spieser et al., 2014). There is some evidence to 

suggest that ride-sourcing vehicles have already increased congestion in cities like San Francisco 

(Erhardt et al., 2019). And as a bridge technology, drivers of ride-sourcing platforms can incur 

significant deadheading (up to 26% of ride-sourcing mileage in one study (Wenzel et al., 2019), 

though others estimate a higher range of 36% to 45% when including ride-sourcing driver trips to 

and from home).  
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 In response to increases in urban congestion and ride-sourcing's environmental and air 

quality impacts, California developed the Clean Miles Standard, which will regulate a fleet's 

annual carbon dioxide (CO2) emissions per passenger-mile (SB-1014, 2018). At the street level, 

some municipalities have created dedicated zones for pick-up, drop-off, and other curbside 

activities (via dynamic use and pricing policies) to manage competing interests of this space by 

SAEVs and other modes (Gurumurthy and Kockelman, 2022; ITF, 2018; Litman, 2021; Marsden 

et al., 2020; Yan et al., 2020). The issue of vehicle emissions and curb access are examples of the 

larger issue at play across municipalities: how do transportation planners and policymakers 

regulate ride-sourcing externalities without stifling mobility innovation? A particular topic of 

interest is how to improve the operations of range-constrained SAEVs while reducing the 

externalities of deadheading, given the impacts of ride-sourcing vehicles today. 

 While the public is interested in the benefits of SAEVs (e.g., low-cost, on-demand trips), 

fleet operators are interested in improving the service and energy efficiency of the vehicles. 

Repositioning vehicles may improve service quality (i.e., wait times), but added travel drains the 

battery, thus increasing downtime at charging stations. Charging vehicles in advance of peak 

demand can increase the likelihood of a successful match by both aligning vehicle availability with 

demand and having sufficient range to complete most trips. Unlike present-day ride-sourcing 

platforms, future SAEVs will be governed by a central operator that has control over vehicle 

actions (e.g., repositioning, charging, maintenance, and pickup/drop-off). Since repositioning 

range-constrained vehicles both influences future charging actions and charging decisions 

influence vehicle availability, control strategies that coordinate charging and repositioning may 

improve operational efficiency and service quality. In this study, an optimization-based control 

strategy for charging and repositioning SAEVs is presented and compared to uncoordinated 
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operational strategies. The strategy is presented numerically to derive intuition that is generalizable 

for any case study and then implemented in an agent-based simulation environment. In addition to 

comparing this novel control strategy to ones found in the literature, this paper explores asset 

utilization of different sizes of fleet-owned electric vehicle charging station networks. 

 As mentioned by Narayanan et al. (2020), using more realistic models tends to show lower 

benefits from on-demand shared vehicle service. Since early SAEV simulation studies (Chen et 

al., 2016; Loeb et al., 2018), advancements in activity-based agent-based models have allowed 

modelers to simulate background freight and inter-city travel within daily intra-city traffic, avoid 

down-sampling of populations (or at least model more than 50% of a metropolitan area’s 

population), and incorporate finer link-level traffic behavior models. However, many 

improvements are necessary (e.g., full street networks, disaggregation of activity locations to 

addresses, trip party size distributions, complete multi-modal network mapping and integration). 

To better prepare for a world of SAEVs, a comparison of a joint charging and repositioning control 

strategy to prior strategies is warranted, given advancements in modeling techniques. If SAEV 

control strategies can reduce externalities and improve passenger service quality in theory but are 

applied to simplistic models then the benefits may be overstated. The first contribution of this 

study is a proposed joint charging and repositioning control strategy for SAEV fleets. The second 

contribution of this study is the application of this strategy to Austin, Texas, within a large-scale 

simulation environment to update estimates on SAEV service results from prior studies. It is also 

useful to compare this optimization-based strategy to others used in the literature to advance work 

in the realm of simulation-based fleet operations. 

 

2. Background 
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 Regulations to lessen added empty VMT by autonomous vehicles may target a certain type 

of travel. For example, this could include privately-owned autonomous vehicles cruising to avoid 

parking or SAEVs repositioning to neighborhoods with high demand, but without a pick-up 

request. In general, there are three sources of empty travel (Winter et al., 2020) for SAEV fleets:  

• Empty pick-up mileage from vehicles assigned to a new, nearby ride request. 

• Empty charging mileage from vehicles driving to an assigned charging station. 

• Empty repositioning mileage from vehicles driving to an assigned location after its last trip. 

  

 The third category (repositioning VMT) is used to either find available parking or 

proactively relocate vehicles to balance anticipated demand with supply. Repositioning SAEVs is 

similar to how ride-sourcing drivers currently cruise to find new requests, often to areas of 

perceived demand from historical experience, but is different in that repositioning SAEVs is 

centralized and coordinated fleet-wide. Repositioning is critical for operators when SAEV demand 

results in many vehicles accumulating in low-demand areas while a dearth of vehicles is observed 

in high-demand areas. In cities where travel demand patterns are unidirectional in morning and 

evening peak hours, vehicles may require explicit repositioning policies to balance the supply of 

vehicles for off-peak periods. If repositioning mileage is penalized (directly or indirectly), fleet 

operators will want to capture riders who are less price-sensitive (i.e., willing to accept an 

additional fee) or couple repositioning with charging trips to avoid a fee and lower total energy 

costs.  

 Overall, repositioning strategies seek to redress the spatiotemporal asymmetry of origins 

and destinations by balancing anticipated demand with supply at discrete time steps, often an hour-

ahead (de Souza et al., 2020; Hörl et al., 2019). Since empty VMT rises with any repositioning 
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strategy and the added travel distance lowers the available range for rides, coupling charging with 

repositioning may be advantageous for fleet operators. If vehicles are repositioned in advance of 

demand, they could travel to a charging station within their assigned zone and fully charge. This 

joint action eliminates the battery depletion aspect of repositioning and avoids large charging 

episodes during peak periods. Since only available vehicles (i.e., those idling or en route to their 

last drop-off) could be considered eligible for repositioning, even long-range vehicles could fully 

charge during this process if they have at least half charge and a direct-current fast charger (DCFC) 

is available upon arrival. 

 A repositioning algorithm based on greedy assignment and solved through constrained 

optimization found that repositioning can lead to a 20% increase in the share of served SAV 

requests, similar to results using arcs (Alonso-Mora et al., 2017). Yet, even a 3% to 6% increase 

in empty VMT, as observed by another assignment strategy study using a fixed-trip dataset (Dandl 

et al., 2019), can shorten the range of SAEVs to serve passenger trips. As a consequence, there 

may be an increase in the number of rejected ride requests because more vehicles need to charge. 

This supply reduction effect may be more pronounced for a fleet of short-range vehicles (100-mi 

range or less). Even if DCFC chargers are used for SAEVs, a drop in the supply of vehicles may 

increase pick-up travel, reduce fleet operation revenue, and create a cycle of diminished average 

fleet state of charge (SOC). Though sophisticated optimal joint repositioning and charging models 

exist, computational complexity limits the scale and thus accessibility of applying such control 

models (Iacobucci et al., 2019). For this reason, simulation-based methods currently rely on 

heuristics or optimization-based control strategies that are applied at multiple time steps. 

 Previous agent-based simulations vary in percent empty VMT reported, as well as the 

increase in empty mileage with proactive repositioning strategies. Early SAEV work on a grid 
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network with fixed demand found that a low-impact strategy of repositioning vehicles within a 

2x2 square mi. zone to prevent an oversupply of vehicles in any smaller 0.5x0.5 square mi. block 

resulted in 1.4% to 6.1% repositioning VMT (Chen et al., 2016). Although repositioning mileage 

was relatively small compared to total VMT, total empty travel across the four respective range 

and charger type scenarios in their study revealed that both repositioning and charging empty VMT 

were not insignificant (2.1% to 11.1%). With dynamic ride-sharing, repositioning mileage 

increased from an estimated 2.0% to 9.3%, but the average daily person-trips per vehicle also 

increased(Farhan and Chen, 2018).  

 Another study explored rebalancing shared autonomous vehicles (SAVs) to optimize 

relocating idling vehicles through a minimum cost flow problem (Vosooghi et al., 2019) within 

MATSim. The total empty VMT rose from 15% to 24% for one scenario; however, mode share 

also increased from 5.3% to 6.4%, confounding the increase in repositioning travel alone. Even 

with an overall increase in empty VMT, a shorter average waiting time of 25% to 35% led to a 

corresponding increase in mode share that could offset potential repositioning travel fees. If SAV 

fleets electrify, the authors found the share of empty VMT increases due to charging (18.3% and 

22.8%, depending on the charging station siting algorithm). The authors note that charging without 

repositioning can result in less dispersed vehicles (Vosooghi et al., 2020). Similarly, Loeb et al. 

(2018) used MATSim to study charging infrastructure and range trade-offs and noted a range of 

empty VMT of 15.3% to 24.0%, though there was no repositioning strategy. In comparison to 

Chen et al. (2016) and Farhan and Chen (2018), Vosooghi et al. (2019, 2020) and Loeb et al. 

(2018) used a road network instead of a simplistic grid, which introduces congestion and improved 

travel time estimates. Though recent studies use more advanced modeling techniques, studies miss 

exploring operational trade-offs between repositioning and charging. 
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 One study proposed an operations optimization framework that considered dispatch, 

repositioning, and charging trips from a fixed-trip dataset (Yi and Smart, 2021). They found that 

a DCFC network can reduce charging downtime by more than 5% compared to a mix of Level 2 

and DCFC chargers, which corresponds to a 6% to 14% reduction in empty VMT. Increasing 

vehicle availability through reduced charge times allowed the SAEV operator to make better 

decisions. Relative to their vehicle-based heuristic dispatch strategy, central management 

increased trips met by 11%. Though they used a detailed road network with travel time estimates 

from OpenStreetMap, the study does not consider traffic congestion. Additionally, their SAEV 

service does not permit ride-sharing, which is understandable considering they propose an 

optimization-based method for repositioning vehicles to unmet requests as opposed to zones with 

insufficient supply.  

 Most SAEV fleet operation works are simulation-based approaches, with some proposing 

and studying optimization-based control strategies. Recent works from the operations research 

field have developed and numerically tested joint assignment, repositioning, and charging 

strategies for SAEV fleets. Given demand uncertainty and the sequential impacts of decisions over 

time, many of these mathematical models are intractable and require approximation methods to 

solve.  

 Al-Kanj et al. (2020) determined their optimal vehicle control strategy by learning a 

hierarchical aggregation of a value function (also called approximate dynamic programming or 

reinforcement learning). Their objective goal was to maximize total revenue while assuming the 

value function was linear with the number of vehicles, which ignored the diminishing value of an 

additional car. The authors suggest future work remedy this problem with a piecewise linear 

approximation. In a numerical case study for New Jersey, their strategy increased revenue per car 
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by over 17% and increased the percentage of trips met from 74% to 95%. Kullman et al. (2021) 

used a deep reinforcement learning method to choose vehicle actions that optimizes fleet profit 

over the entire time horizon and compared their approach to a well-known repositioning strategy 

(Alonso-Mora et al., 2017). In a numerical experiment with the same Manhattan trip dataset as Yi 

and Smart (2021) used, Kullman et al.’s adaptable strategy increased the fleet’s profit by 18% over 

a wait-and-see repositioning strategy (Alonso-Mora et al., 2017).  

 In summary, agent-based models that simulate repositioning strategies of SAEV fleets are, 

to the best of the author’s knowledge, limited to three studies (Chen et al., 2016; Farhan and Chen, 

2018; Yi and Smart, 2021), although several studies have explored repositioning of SAV fleets 

(Bauer et al., 2018; Bischoff and Maciejewski, 2016; de Souza et al., 2020; Fagnant and 

Kockelman, 2018, 2014; Hörl et al., 2019; Martinez and Viegas, 2017; Vosooghi et al., 2019; 

Winter et al., 2020). Moreover, only one study has integrated charging and repositioning decision-

making, though they do this for a fixed-trip dataset in a simulation environment that does not have 

other modes or background congestion (Yi and Smart, 2021).  

 Although repositioning and routing of SAEVs can be formulated as an extension of a Green 

Vehicle Routing Problem, Dynamic Vehicle Routing Problem with Time Windows, Electric Vehicle 

Routing Problem, or other intelligent assignment problems (see (Hörl et al., 2019) for further 

discussion), computationally efficient heuristic vehicle assignment and routing methods are 

adequate for large-scale regions. Using heuristic dispatch methods may even be advantageous for 

large regions with less than 40 average daily SAV trips per vehicle (Yi and Smart, 2021). A 

comparison of vehicle assignment and routing decisions is out of the scope of this work, which is 

on charging and repositioning decisions for SAEV fleets.  
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 This study leverages POLARIS, an activity-based agent-based modeling framework, to 

simulate joint charging and repositioning decisions for a 100% synthesized Austin, Texas 

population. As mentioned by (Narayanan et al., 2020), using more realistic models tends to show 

lower benefits from SAV service. To better prepare for a world of SAEVs, a comparison of a joint 

charging and repositioning control strategy to prior strategies is warranted, given advancements in 

modeling techniques. Though we provide a numerical explanation of the strategy for generalizable 

intuition, findings from the case study of Austin, Texas, are used to compare with prior estimates 

of  SAEV service (Chen et al., 2016; Loeb et al., 2018). This paper is organized as follows: Section 

3 introduces heuristic and optimization-based charging and repositioning control strategies, 

including the proposed model. Section 4 introduces the POLARIS framework and the 

implementation of the case study for Austin. Results from the case study are presented in Section 

5 and a discussion of the results are in Section 6. Finally, our conclusions and recommendations 

for SAEV fleet operators are in Section 7. 

 

3. Modeling Framework 

 The charging and repositioning strategy developed in this study is an SAEV optimization-

based control strategy. The strategy jointly considers charging and repositioning decisions at the 

same decision epoch, solved simultaneously, and explores the fleetwide benefits of this approach. 

The remainder of this section describes the model developed, alongside similar work and its 

shortcomings, and an example problem to illustrate the motivation for our implementation. 

3.1 Optimization Framework for Charging and Repositioning 

 Existing repositioning strategies consider the balance between supply and demand but do 

not make optimal charging decisions (Chen et al., 2016; Farhan and Chen, 2018). Vehicle-level 
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charging heuristics also often fail to account for possible queuing at charging stations by sending 

vehicles to the closest station or by assuming unlimited charging capacity (Chen et al., 2016; 

Farhan and Chen, 2018; Iacobucci et al., 2019; Yi and Smart, 2021). Even with a centrally 

managed trade-off between distance to the charger and time spent queuing, the heuristic still does 

not answer the question of when to best charge vehicles. This creates an opportunity to observe 

the benefits of combining repositioning and charging decisions at a single time step. 

 The repositioning strategy for SAVs by de Souza et al. (2020) is adapted to consider the 

new logistical challenges of an electrified fleet. Electric vehicles are both range constrained and 

have substantial charging times, requiring careful coordination with any repositioning strategy of 

distributing idle vehicles to meet anticipated demand so that service quality improves. The fleet 

operator must check each idle vehicle before repositioning to ensure sufficient charge to reach the 

desired zone and serve the expected demand. Location and availability of chargers can also factor 

into decision-making so that vehicles arrive at an assigned charging station in a zone and recharge 

before expected demand increases. Assigning vehicles to available chargers as opposed to charging 

stations can help minimize downtime (or conversely increase vehicle availability). If charging is 

prioritized when there is little to no supply deficit, then vehicles are more likely to be available 

during peak travel periods and serve more trip requests. 

 With most proactive repositioning strategies, the purpose is customer-centric: vehicles in 

low-demand zones are moved to high-demand zones with the goal of meeting expected future 

demand and shortening wait times. Since not all zones receiving vehicles have chargers, any 

coupling of the two activities should weigh the loss in SOC from traveling to the destination and 

the goal of balancing supply with demand. To this end, an optimization-based strategy is employed 

to create optimal charging and repositioning decisions for idle vehicles. In this framework, the 
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repositioning decisions are obtained by solving a Linear Programming problem at every control 

time step. Following previous work, the region is split into an arbitrary set of zones, and the input 

data are defined based on these zones. In this work, the region’s traffic analysis zones are used, 

but any other zone definition can be used. The following nomenclature for this strategy is defined 

in Table 1 and explained below. Although this work does not employ any sophisticated demand 

prediction model or multi-step model predictive control, the control strategy projects the prevailing 

demand one step ahead (e.g., 15 minutes) and acts to avoid expected supply deficits in the future. 

Therefore, the control strategy, which acts in anticipation of future problems, can be considered 

proactive. 

Table 1: Model nomenclature for repositioning and charging control strategy 

Type Name Description 

Endogenous 

Variable 

𝑠𝑗 Supply of vehicles in zone j 

 𝑧𝑗(𝑖) Vehicle i idles in zone j or en route to zone j as the final destination 

(binary) 

 𝛿𝑗  Slack variable for zone j to guarantee a non-negative supply deficit 

 𝐶𝑗  Available capacity of charging station(s) in zone j 

 𝑆𝑂𝐶𝑖  State of charge of vehicle i 

Exogenous 

Variable 

𝑓𝑗 Expected demand in zone j 

𝑡𝑖𝑗 Zone-to-zone travel time estimate for vehicle i moving from its 

current zone to destination zone j  

𝑣𝑖 Binary variable based on the vehicle’s SOC (1 when 𝑆𝑂𝐶𝑖 >
𝑆𝑂𝐶𝑚𝑖𝑛, indicating vehicle 𝑖 is available). 

Decision 

Variables 
𝑥𝑖𝑗 Vehicle i repositions to zone j (binary) 

𝑎𝑖𝑗 Vehicle i goes to a charging station in zone j (binary) 

Parameters 𝑆𝑂𝐶𝑚𝑎𝑥 Maximum state of charge (cutoff for charging vehicles) 

𝑆𝑂𝐶𝑚𝑖𝑛 Minimum state of charge 

𝛼 Weight for charging trips 

𝛽 Weight for slack variable 

Sets 𝐼 Set of vehicles 𝑖 ∈ 𝐼 

𝐼𝑗 Set of vehicles at zone j, 𝐼𝑗 ⊆ 𝐼 

𝑍 Set of zones 𝑗 ∈ 𝑍 
Note: The expected demand may also be an endogenous variable if reactive – but for each independent control 

step it is still considered exogenous.  
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 The fundamental zonal variables, expected demand and current supply, are denoted as  

𝑓𝑗  and 𝑠𝑗, respectively. The supply 𝑠𝑗 is computed based on the current state of each vehicle 𝑖 ∈ 𝐼 

(𝑠𝑗 = ∑ 𝑧𝑗(𝑖)𝑖∈𝐼 ) where 𝑧𝑗(𝑖) = 1 if the vehicle 𝑖 is idling in zone j or currently performing a set 

of operations which will eventually end in zone j (i.e., last dropoff in zone 𝑗 or charging or 

repositioning in zone 𝑗); 𝑧𝑗(𝑖) = 0  otherwise. The expected demand 𝑓𝑗   is assumed to be an integer 

number and can be obtained through historical counts or any appropriate estimation method. The 

zonal variable 𝛿𝑗 > 0 (𝑗 ∈ 𝐽) denotes the slack variables for supply deficit at zone  

𝑗. This variable was not present in de Souza et al. (2020) but in other work (Dandl et al., 2019), 

and the role is discussed further below. 

 The time-varying zone-to-zone travel time skim matrix, 𝑇𝑇𝑂𝐷, where 𝑂 ∈ 𝑍, 𝐷 ∈ 𝑍, is 

assumed to be given or pre-computed for every pair. For simplicity, we denote 𝑡𝑖𝑗 as the travel 

time for vehicle 𝑖 to travel to zone 𝑗. Note that 𝑡𝑖𝑗 is the element that is returned from 𝑇𝑇𝑂𝐷 by 

knowing the origin zone 𝑂 of vehicle 𝑖 and the destination zone 𝐷. These assumptions and 

definitions are the same as de Souza et al. (2020). However, repositioning decisions are now taken 

for each vehicle as opposed to zone aggregated decisions. Here, the binary variable 𝑥𝑖𝑗 indicates 

if vehicle 𝑖 will reposition to zone 𝑗 with 𝑥𝑖𝑗 defined for each idle vehicle 𝑖 ∈ 𝐼𝑗 and for every zone 

𝑗. 

 For the charging decisions, it is necessary to track the SOC of each vehicle. At any given 

time, the SOC for vehicle 𝑆𝑂𝐶𝑖  ranges from 0% to 100%. A minimum threshold 𝑆𝑂𝐶𝑚𝑖𝑛 is set to 

the minimum desired operational SOC for vehicles, which should be higher than absolute low SOC 

settings used in charging heuristics. If not, the fleet may be balancing supply and demand with 

vehicles that are not capable of serving future requests because repositioning drained the battery. 

A binary constant 𝑣𝑖 takes the value 1 when 𝑆𝑂𝐶𝑖 > 𝑆𝑂𝐶𝑚𝑖𝑛, indicating vehicle 𝑖 is available for 
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repositioning. Effectively, setting 𝑣𝑖 to 0 makes vehicle 𝑖 more likely to go charge.  Since 𝑣𝑖 is a 

constant known before each time step, it is not a binary decision variable.  The supply of unused 

charging stations (i.e., plugs) at zone 𝑗 is denoted as 𝐶𝑗.  

 The binary decision variable 𝑎𝑖𝑗 denotes whether vehicle 𝑖 will move and then charge in 

zone 𝑗 and is defined for each idle vehicle 𝑖 ∈ 𝐼 and for all zones 𝑗 ∈ 𝐽. Charging decisions need 

to consider the availability of chargers. To that end, the number of vehicles charging at zone j 

cannot exceed the current charger availability at that zone: ∑ 𝑎𝑖𝑗𝑖∈𝐼 ≤ 𝐶𝑗 , 𝑗 ∈ 𝑍. To permit some 

queuing at stations, all stations can allow up to 30% of the number of available plugs (hence total 

available capacity is 1.3 times the available plug count). Since this constant need not be applied in 

all case studies, it is left out of the constraint. 

 Given these variables, it is easy to develop constraints for the optimization problem. The 

decision variables associated for each vehicle i must respect that each vehicle can perform at most 

one operation: 0 ≤ ∑ (𝑥𝑖𝑗 + 𝑎𝑖𝑗)𝑗∈𝑍 ≤ 1, 𝑖 ∈ 𝐼, which considering that 𝑥𝑖𝑗 and 𝑎𝑖𝑗 are binary, 

enforces that only one element associated with vehicle i can be assigned the value of 1. 

 The movement of an idle vehicle to or from zone j impacts vehicle availability of that zone. 

Accounting for vehicles entering and leaving the zone can be thought of as a mass balance problem 

that ensures vehicle supply for a given zone is greater than or equal to expected demand: 

∑ (𝑥𝑖𝑗𝑣𝑖 + 𝑎𝑖𝑗)𝑖∈𝐼 −  ∑ (𝑎𝑗𝑖 +  𝑥𝑗𝑖𝑖∈𝐼𝑗
)𝑣𝑖 + 𝛿𝑗 ≥ 𝑓𝑗 − 𝑠𝑗 , 𝑗 ∈ 𝑍, where 𝐼𝑗 is the set of idle vehicles 

at zone j. Recall that 𝑣𝑖 is a binary constant that depends on the SOC of vehicle i, meaning that a 

vehicle moving to zone j with low SOC does not count towards the destination zone’s supply. 

Effectively, 𝑥𝑖𝑗 is eliminated for vehicles with 𝑣𝑖 = 0. This constraint also includes the slack 

variable for supply deficit, 𝛿𝑗. If there is a current supply deficit, this constraint is satisfied either 

by repositioning vehicles to zone j or by relying on the slack variable. The operator desires to have 
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the value of all slack variables be 0, meaning the expected demand and supply is balanced for all 

zones. However, this situation may not be possible in periods of high demand (i.e., high 𝑓𝑗) and 

low supply (i.e., low 𝑠𝑗). In that case, the slack variables prevent an infeasible problem without 

additional changes to the problem inputs (i.e., reducing the demand as needed). The use of slack 

variables is a new addition to previous repositioning work. 

 The optimization problem cast as a minimization problem has an objective function that 

aligns with the three key goals of the strategy: (i) reduce total travel from decisions, (ii) keep idle 

vehicles with sufficient SOC, and (iii) avoid underserving zones. The objective function 𝐽 is as 

follows:        

𝐽 = ∑ 𝑡𝑖𝑗(𝑥𝑖𝑗 + 𝑎𝑖𝑗)𝑖∈𝐼,𝑗∈𝑍 − 𝛼 ∑ 𝑎𝑖𝑗(𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑖)𝑖∈𝐼,𝑗∈𝑍 + 𝛽 ∑ 𝛿𝑗𝑗∈𝑍                                      (1) 

 The first term in the objective function weights the travel time and since it is positive it 

attempts to reduce the travel time cost of each repositioning or charging vehicle. Travel times are 

taken from a time-dependent zone skim matrix, but could include travel time estimate from each 

vehicle i’s current location to desired repositioning destination in zone j. The second term in the 

objective function weights the increase of SOC which would follow from a vehicle moving to a 

charging station in zone j (i.e., 𝑎𝑖𝑗 = 1). Note the minus sign for a minimization problem rewards 

vehicles that charge so long as 𝛼 > 0, with a higher benefit applying for vehicles with a low SOC. 

Finally, the third term in the objective function penalize supply deficits so long as 𝛽 > 0. 

 Considering the objective is in units of travel time (𝛼 and 𝛽 have suitable units to transform 

the second and third terms into time units), we can derive trade-offs between the second and third 

terms with the first. Regarding charging benefits, ignoring the supply deficit, a charging trip for 

vehicle i to zone j would lead to negative or zero cost when 𝑡𝑖𝑗 ≤ 𝛼(𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑖). 

Considering the linearity in this relationship, 𝛼 =
𝑡𝑖𝑗

𝑆𝑂𝐶𝑚𝑎𝑥−𝑆𝑂𝐶𝑖
 is the minimum charging increment 
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per unit time that is accepted for performing a charging decision. Not that this reasoning can be 

made since the vehicle does at most one operation (i.e., if 𝑎𝑖𝑗 = 1, then 𝑎𝑖𝑘 = 0   ∀ 𝑘 ≠

𝑗 𝑎𝑛𝑑 𝑥𝑖𝑗 = 0    ∀𝑗. The benefit of this approach is that all else constant, if only one vehicle is to 

go charge in zone j the best vehicle to send is the one with the lowest current SOC, since that 

increases the likelihood of the fleet fulfilling ride requests in the future.  

 A similar analysis can be done to explore the time tradeoff between travel time cost and 

meeting supply deficit with a slack variable. Any repositioning between vehicle i to zone j reduces 

the 𝛿𝑗 of zone j by one unit. Therefore, 𝛽 is the maximum travel time an idle vehicle will travel to 

a zone with a supply deficit. If 𝑡𝑖𝑗 > 𝛽 then it becomes less costly to incur a unit increase in the 

third term (𝛽𝛿𝑗) instead of repositioning a vehicle (𝑡𝑖𝑗𝑥𝑖𝑗).  

 Note, other studies may include charging as a constraint or an added term in the objective 

function multiplied by a large constant M (Iacobucci et al., 2021). Since most objective functions 

minimize costs (or maximize profit), the optimal solution may avoid charging until forced through 

a minimum SOC or increasing charging as much as possible at the end of an optimization time 

step. Including time-varying electricity prices or opportunity costs (i.e., penalty for charging a 

vehicle during peak hours instead of being available) could help to opportunistically charge 

vehicles. Instead, our strategy will charge vehicles with low SOC if nearby a charging station and 

the supply of vehicles is greater or equal to the expected future demand. 

 The multiple terms in the objective function are weighted with non-zero parameters α and 

β, which prioritize charging vehicles and repositioning vehicles to minimize the reliance on the 

slack variable, respectively. Parameter values were adjusted through several iterations until two 

distinct outcomes were achieved, namely: demand prioritization (DP) and charging prioritization 
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(CP). The objective with these two scenarios is also meant to speak to the sensitivity of the 

optimization to charging and repositioning trips. 

3.1.1 Optimization Problem Formulation 

Combining the constraints and the objective function, the problem is formulated as: 

𝑃: min
𝑎𝑖𝑗,𝑥𝑖𝑗,𝛿𝑗

𝐽 

 𝐽 = ∑ 𝑡𝑖𝑗(𝑥𝑖𝑗 + 𝑎𝑖𝑗)𝑖∈𝐼,𝑗∈𝑍 − 𝛼 ∑ 𝑎𝑖𝑗(𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑖)𝑖∈𝐼,𝑗∈𝑍 + 𝛽 ∑ 𝛿𝑗𝑗∈𝑍    

s.t.   

0 ≤  ∑ (𝑥𝑖𝑗 + 𝑎𝑖𝑗)𝑗∈𝐽 ≤ 1,                                                                         𝑖 ∈ 𝐼     

∑ 𝑎𝑖𝑗𝑖∈𝐼 ≤ 𝐶𝑗 ,                                                                                                𝑗 ∈ 𝑍  

∑ (𝑥𝑖𝑗𝑣𝑖 + 𝑎𝑖𝑗)𝑖∈𝐼 −  ∑ (𝑎𝑗𝑖 +  𝑥𝑗𝑖𝑖∈𝐼𝑗
)𝑣𝑖 + 𝛿𝑗 ≥ 𝑓𝑗 − 𝑠𝑗 ,                     𝑗 ∈ 𝑍  

𝑥𝑖𝑗 ∈ {0,1},                                                                                                   𝑖 ∈ 𝐼, 𝑗 ∈ 𝑍  

𝑎𝑖𝑗 ∈ {0,1},                                                                                                   𝑖 ∈ 𝐼, 𝑗 ∈ 𝑍                     

0 ≤ 𝛿𝑗 ,                                                                                                            𝑗 ∈ 𝑍   (2) 

 which is a Mixed Integer Linear Programming (MILP) since 𝑥𝑖𝑗 and 𝑎𝑖𝑗 are binary 

variables. Nevertheless, this problem can be efficiently solved due to its inherent properties and 

variable elimination. The following combinations of variables can be eliminated: 

1) all 𝑥𝑖𝑗 vehicles with 𝑆𝑂𝐶 < 𝑆𝑂𝐶𝑚𝑖𝑛 and therefore 𝑣𝑖 = 0, since 𝑥𝑖𝑗 = 1 would reposition 

a vehicle without the destination zone increasing supply by one unit; 

2) all 𝑥𝑖𝑗 with 𝑡𝑖𝑗 > 𝛽 since it is more beneficial to incur an increase in slack to meet the 

demand-to-supply constraint than it would to reposition a vehicle (note there is no variable 

elimination for 𝛽 →  ∞); 

3) similarly, all 𝑎𝑖𝑗 such that 𝑡𝑖𝑗 − 𝛼(𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑖) > 𝛽. 
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 With elimination of these variables, the constant 𝑣𝑖 only appears with the term 𝑎𝑖𝑗 in the 

demand-to-supply balance constraint. Nevertheless, the key factor to efficiently solve the 

optimization problem is to eliminate the binary variables. We exploit the total unimodularity 

property of the constraint matrix, which occurs when the right-hand sides of inequality constraints 

are integer variables and proves the solution is integral numbers. This property has been exploited 

in (de Souza et al., 2020; Hyland and Mahmassani, 2018). Absent a formal proof, numerical 

analysis on a large number of instances of varying sizes (Walter and Truemper, 2013) demonstrates 

the problem has totally unimodular constraints for 𝑣𝑖 = 1 ∀𝑖 (i.e., only vehicles that count as 

supply, otherwise they are ignored). This means that the binary decision variable constraints on 

the problem can be replaced with:  

0 ≤ 𝑥𝑖𝑗 ≤ 1,                                                                                                    𝑖 ∈ 𝐼, 𝑗 ∈ 𝑍  

0 ≤ 𝑎𝑖𝑗 ≤ 1,                                                                                                    𝑖 ∈ 𝐼, 𝑗 ∈ 𝑍                    (3)  

 Thus, this problem can be solved through Linear Programming, provided that 𝑓𝑗 and 𝑠𝑗 are 

also integers. The problem may not be totally unimodular in the case there are vehicles with low 

SOC. Based on numerical experiments, in all cases, the solver yields integral numbers for the 

solution. If there is a case where this is not true, the problem could be solved by setting 𝑣𝑖 = 1 for 

all vehicles in that case. 

 The optimization problem, through variable elimination, has interesting special cases. If 

there are no charging decisions (i.e.,  𝑎𝑖𝑗 = 0 ∀𝑖 ∈ 𝐼) the problem reduces to a repositioning 

strategy. Removing the slack variables and charging decisions, this problem becomes nearly 

equivalent to the baseline repositioning strategy, which is shown in the Appendix. Similarly, the 

problem becomes a model for charging decisions if repositioning is ignored. Since the model 
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formulation allows for the flexibility of dialing the tradeoff between these features, it allows for a 

study of the synergies between these strategies. 

 As mentioned previously, the problem is solved at a decision-making time step that is 

subject to modeler judgment. As SAEV operations occur every second, the shorter the 

repositioning step the better fleet information the operator receives. For example, the operator 

would update its record of charging station availability to know whether the station can accept 

more vehicles. However, better demand forecasts are necessary with shorter time steps, which 

comes from historical ridership data and a willingness of SAV riders to inform operators of their 

departure times in advance (which is only available for select ride-sourcing platforms, see Lyft's 

Wait & Save). This study assumes a time step of 15 minutes to react to zonal demand, which is 

estimated based on trip requests made in the prior 15 minutes. 

3.2 Simple Numerical Example of Joint Charging and Repositioning Strategy 

 As a simple example, Equation (2) is applied to a fictitious town with four zones, two 

charging stations, and a fleet size of five SAEVs. Figure 1 shows the zones labeled 1-4 clockwise 

from the top left. Charging stations are represented as lightning bolts and both zones 2 and 4 have 

a single charging connection. At some decision-making time step there are three vehicles (black) 

that are idle. Three vehicles are not counted towards available supply sj: the red vehicle picking up 

a passenger in zone 1 and a green vehicle charging in zone 2. Vehicle 4 in zone 3 has insufficient 

SOC for repositioning and is not counted as supply at origin and potential destination zones. If this 

vehicle charges, it will be counted as an additional supply unit at the destination zone. Based on 

the prior quarter-hour, the expected demand for the city is fj = {1,0,1,0}. This means that only zone 

1 has a supply deficit while the remaining zones either have sufficient supply or both supply and 

demand are zero. At present, there are four plausible choices (though more exist): 
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1) do not reposition or charge any idle vehicles and rely on a slack variable to satisfy the 

first constraint. 

2) reposition vehicle 2 to zone 1 to reduce the supply deficit. 

3) reposition vehicle 2 to zone 1 to reduce the supply deficit and assign vehicle 5 to the 

charging station in zone 4. 

4) reposition vehicle 5 to zone 1 to reduce the supply deficit. 

 

 If the travel time for vehicle 2 to zone 1 (choice 2) is less than the travel time for vehicle 5 

to zone 1 (choice 4), then the least-cost option between the two choices is to reposition vehicle 2 

to zone 1. However, there is a trade-off between minimizing the travel time cost in the objective 

function to satisfy the zonal supply and demand constraint and relying on a slack variable for zone 

1 (choice 1). If the parameter 𝛽 is greater than the travel time cost for vehicle 2 repositioning to 

zone 1, then the lowest objective value between these two choices is found in repositioning vehicle 

2. The last comparison to make is between choice 2 and choice 3. Choice 3 would increase the 

travel time cost by assigning vehicle 5 to the available charging station in zone 4 but could lower 

the objective value if the product of 𝛼 and the SOC increase from charging the vehicle is greater 

than the travel time cost. Provided that the zone-to-zone travel times for vehicle 2 is t2j = {2,0,3,5} 

and vehicle 5 is t5j = {6,2,0,2}, the weight parameter for charging is 𝛼 = 10, the SOC increase for 

vehicle 5 is 0.40, and the weight parameter for slack is 𝛽 = 20, the objective values of the four 

choices are: 20, 2, 0, and 6. Hence, the optimization-based control strategy would pursue choice 

3. The benefit of this choice is that users of this SAEV in zone 1 will experience lower wait times, 

the anticipated supply deficit is minimized at this time step without relying on a slack variable, 

and a vehicle can charge 40% of its battery during an off-peak period. Additionally, by assigning 
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charging vehicles to charging stations with available capacity, the strategy minimizes charging 

downtime and resulted in zone 4 having a vehicle, albeit an unavailable SAEV. If the parameter 

for charging were less, say 𝛼 = 2, then the best strategy would be choice 2, since the reward for 

charging is not greater than the travel time cost for charging. Thus, the trade-off between charging 

is sensitive to the SOC increase and the travel time cost. The operator would be wise to not send a 

vehicle to a charging station if 𝛼 ≤ (△ 𝑆𝑂𝐶)−1 ∗ 𝑡𝑡𝑖𝑗 and not reposition a vehicle if 𝛽 ≤ 𝑡𝑡𝑖𝑗 (for 

a single vehicle decision). 

 

Figure 1: Illustration of a numerical example of the proposed charging and repositioning strategy 

4. Case Study 

4.1 POLARIS simulation environment 

 The activity-based agent-based modeling tool called POLARIS (Auld et al., 2016) is used 

to investigate the optimization-based control strategy for charging and repositioning SAEV fleets 

for a large-scale region to derive insights for fleet operators and transportation planners alike. 

Although the control strategy is transferable to any simulator, POLARIS was chosen due to 

advancements in simulation modeling and to compare with baseline charging and repositioning 

strategies from prior studies (de Souza et al., 2020; Gurumurthy et al., 2021b). The simulation 

environment uses demand models to simulate agents' weekday activities across a region for a 
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single day. These models are estimated from data provided by the region's metropolitan planning 

organization and the United States Census Bureau according to the ADAPTS modeling framework 

(Auld and Mohammadian, 2012, 2009). Interested readers should refer to the appendix for data on 

the calibration of these econometric models. For example, daily activities are subject to near-term 

scheduling constraints like synthesized person- and household-level attributes and long-term 

residential and vehicle self-selection choices. A time-dependent dynamic traffic assignment router 

(Verbas et al., 2018)  routes vehicles whose experienced travel time is an outcome of a mesoscopic 

traffic flow model based on the link transmission model (de Souza et al., 2019). This results in 

finer link-level traffic behavior than queue-based algorithm approaches (Horni et al., 2016). The 

region’s population is not down sampled and time-dependent background traffic, such as freight 

and other external travel, is added to links to add increased realism. In developing a model of the 

region's travel behavior and traffic, trips were not fixed (frequency, departure time, and mode 

chosen) but the population was fixed (workplace choice, vehicle ownership, households) to 

understand how different SAEV scenarios can change outcomes in a competitive, dynamic world. 

This variation can add complexity in interpreting results but leads to a more realistic analysis, 

given that operational changes can influence the percent of trips met and subsequent demand. The 

following subsections detail the modeling assumptions for SAEV operations and fleet-owned 

charging stations within POLARIS.  

4.1.1 Assignment and Dynamic Ride-sharing 

 The operator assigns vehicles to riders using a computationally-efficient, zone-based 

assignment (Bischoff and Maciejewski, 2016; Gurumurthy, 2020) by matching ride requests to 

SAEVs in the same or nearby zones, thereby reducing overall pick-up VMT and ensuring 

adequately low response times. This is supported by Hörl et al.'s study that revealed their adopted 
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load-balancing heuristic (Bischoff and Maciejewski, 2016) has lower wait times during peak times 

than their alternative optimized Global Euclidean Bipartite Matching algorithm (Hörl et al., 2019). 

 The operator truncates an array of neighboring zones for each zone according to pre-

defined maximum wait times using free-flow travel times. This array is used to ensure that if an 

agent chooses an SAEV within the utility-maximizing mode choice model, an available SAEV 

will likely serve the trip within a reasonable window. The operator also dispatches the longest-

idling vehicles first within a zone (if there are multiple available vehicles), to maximize vehicle 

utilization (Gurumurthy, 2020). 

 Once pick-up time is limited to a threshold, delays from sharing a ride need to be taken 

into consideration. Dynamic ride-sharing is centrally coordinated to ensure that matching new 

riders to existing trips does not exceed vehicle capacity or delay travelers past a maximum 

allowable delay both in absolute (minutes) and relative travel time (percent more than expected) 

(Gurumurthy and Kockelman, 2022). Rides are matched using a heuristic that uses directions 

between the vehicle's final destination in its sequence of trips and the new request's destination. 

The angle threshold between these trips for matching is set to 10º. Once a match is made, all current 

pick-ups and drop-offs are reordered using a spatial sequential search (i.e., a spatial R-tree 

architecture) that respects the traveler pick-up constraint (cannot drop-off a traveler before picking 

them up). In short, the assigned vehicle finds the nearest pickup or dropoff location (out of all 

scheduled and newly assigned locations) by shortest Euclidean path. Like other agent-based 

models, two or more travelers cannot yet request a shared ride together (like multi-party ride-

sourcing trips). 

4.1.2 Electric Vehicle Consumption and Charging Station Modules 
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 Baseline charging rules are defined and tracked by both the fleet operator and SAEVs 

(Gurumurthy et al., 2021b). Electricity consumption and charging takes a factor-based approach 

(i.e., available range of vehicles decreases by vehicle-miles traveled and increases by a linear 

charging rate). The operator ensures SAEVs have sufficient range to complete currently assigned 

ride requests before adding a new request to the vehicle's to-serve list. The SAEV, in turn, checks 

its SOC at the end of each tour so that it can charge if below a threshold. SAEVs can also 

proactively charge if idling for longer than an allowable threshold. 

 Once a charging decision is made, the operator finds the nearest charging station based on 

downtime (so that distance and queue time are factored into charging station assignment). SAEVs 

and private electric vehicles do not share charging infrastructure. The operator does not allow 

charging vehicles to unplug early and serve ride requests.  

 The charging station network inherently influences charging downtime, energy use, and 

operating costs. Better utilization of chargers through optimal charging strategies may even allow 

operators to have a sparser network. A heuristic to site and size stations was adopted (Gurumurthy 

et al., 2021b), which generates a new station for vehicles based on density parameters and 

additional plugs based on queue time limits. Since the algorithm sites stations based on demand 

and arguably oversupplies infrastructure under the sub-optimal baseline heuristic control of 

charging, it was compared to two networks where the number of plugs is scaled and where select 

stations are eliminated. This is done to reflect how stations with fewer plugs may be able to avoid 

electrical upgrades, assuming sufficient residual capacity. Additionally, eliminating smaller 

stations in the network can avoid land acquisition costs, which increasingly become a larger 

portion of the total cost with decreasing plug count. 

4.2 Austin, Texas Simulation Inputs and Scenarios 
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 The proposed control strategy in section 3.1.1 is evaluated for a fleet of SAEVs serving 

trips in Austin, Texas, and compared to baseline strategies (section 3.1). The fleet was constrained 

to both a 6-county metropolitan region and a smaller geofenced region extending from the central 

business district. Though both service areas geofence SAEVs, this study considers the 6-county 

metropolitan region as the largest possible service area for both SAEV and non-SAEV intra-city 

trips. For simplicity, the central city geofence is abbreviated to “geofenced region.” The geofenced 

region reflects the expectation that initial SAEV operations may be restricted to areas with high 

trip density (e.g., the central business district, government complexes, universities, mixed-use 

developments, airports). The 6-county metropolitan region represents the long-term future of 

SAEV operations and is simultaneously used to rigorously evaluate the proposed joint 

optimization framework for a large-scale region. 

 The Austin metropolitan region encompasses close to 5,300 square miles of land, and the 

transportation system is abstracted to 2,160 zones, 16,100 links, and 10,400 nodes. The smaller 

geofenced region (60.3 sq mi) covers about 400 zones, 3,500 links, and 2,170 nodes. The fleet size 

was exogenously set at 15,000 vehicles and 2,220 vehicles (almost 1 SAEV per 125 residents) for 

the two analysis regions, both with 300-mi range vehicles. This aligns with literature of vehicle-

to-resident ratios and the goal that SAEVs should have sufficient to cover average daily VMT 

before needing to charge from a near empty SOC. Figure 2 shows a layout of the two service areas 

and the roadway network.  

 All scenarios used a 2015 roadway model that aggregates local roads and includes centroid 

connectors from the region’s metropolitan planning organization. The synthetic population was 

estimated from year 2018 United States Census Bureau’s American Community Survey Public 

Use Microdata Sample (United States Census Bureau, 2018). Appropriate mode choice models 
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(e.g., nested multinomial logit) were developed from the 2016-2017 Austin household travel 

survey (provided by the region's metropolitan planning organization). Taxi and ride-sourcing 

vehicles in the survey were estimated as SAEVs in the mode choice model, with assumed fare 

components ($0.50/mile and $0.25/minute) and a value of travel time savings parameter (25%) to 

reduce the disutility of traveling in an on-demand, door-to-door autonomous vehicle. Since taxi 

and ride-sourcing vehicles were underrepresented in the household travel survey, the alternative 

specific constants for this mode were scaled up by 50% to reflect the belief that this mode will be 

more attractive in the future due to sharing behavior and more experience with on-demand ride-

sourcing. The cost estimates come from prior work in this field (Becker et al., 2020; Compostella 

et al., 2021). In addition, the vehicle ownership reduction model in Menon et al. (2019) is adapted 

to present a future base case where approximately decennial vehicle ownership choices are 

influenced by SAVs. As a result of these forecasting assumptions, the mode choice model results 

in an SAEV mode share of 6.3% for rule-based charging and no-repositioning scenario (versus 

2.4% with the present-day mode choice model) in the 6-county region. Table D.1 in the appendix 

shows levels of household vehicle ownership before and after this model is applied for the 

synthetic Austin population.  
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Figure 2: Overview of Austin, Texas service areas and roadway network 

 Three fleet-owned charging station networks were used: a densely distributed heuristic 

("distributed"), scaled-down version by eliminating 50% of plugs at each station ("scaled 50%"), 

and scaled-down by eliminating 75% of plugs at each station and further removing 50% of 1-plug 

stations ("depot-like"). The heuristic sites a 50kW charging station with 5 plugs if a station is not 

within 2 Euclidean miles from a vehicle sent to charge on a warm start run. If an SAEV queues at 

a charging station for longer than 15 minutes, an additional plug is generated. This siting process 

is done with 100-mi vehicles and the baseline charging heuristic. Short-range vehicles were used 

to provide sufficient charging capacity during peak hours, albeit the set-up lowers utilization of 

fleet charging equipment. Figure 3 maps the charging station locations (100% heuristic-sited) since 

the alternative is a scaled-down network. 
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Figure 3: Charging station heuristic-sited scenario in Austin, Texas’ 6-county and core area 

geofence 

 

 The second charging station network assumes a uniform scaling factor of 0.5 at each station 

to reduce the count of plugs. An additional scenario was performed to create a sparser network 

that resembles a depot-like charging station business model, with each reduction rounding down 

to the nearest whole plug. The advantage of three charging station networks is that it allows for a 

discussion on the spatial-temporal utilization of chargers and the appropriateness of using high-

density, small stations for the zone-based optimization framework. See the appendix for a plug 

and station count comparison between charging station networks. 

 The first operational strategy is the baseline scenario of rule-based charging without 

repositioning (“Base”) (Gurumurthy et al., 2021b). The second strategy uses the proposed SAEV 

framework but does not allow for repositioning to understand the effect of this framework on 

charging trips (“OC”). The third strategy sought to fulfill more trip requests and lower passenger 
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wait times by allowing SAV-based repositioning (“BaseRepo”) (de Souza et al., 2020). The 

proposed SAEV charging and repositioning control strategy was compared to the baseline SAV 

repositioning strategy. By changing the relative weight of charging or repositioning parameters, 

three control strategies were developed to understand the contribution of each activity to 

performance metrics and implications for the fleet (e.g., empty VMT, downtime). Though the 

entire 24-hour simulation uses constant weights, fleet operators may change parameter values by 

the time of day. The fourth strategy sought to mitigate repositioning effects and charging trip 

downtime by optimizing the two events jointly with a higher focus on demand (“DP”). The fifth 

strategy examined the trade-off between the two events with a higher priority for charging (“CP”). 

The sixth strategy attempted to blend the need for repositioning and coupled charging, or joint 

(“J”). See Table E.1 in the appendix for the weights used in this study. As mentioned in section 

3.1, a higher value for 𝛽 would encourage more repositioning trips, up to the travel time trade-off, 

and a higher value for 𝛼 would encourage more charging trips, up to the product of travel time and 

inverse SOC change trade-off. 

 

5. Results 

 Thirty-six scenarios were run (three charging station networks, two service networks, and 

six operational strategies). The base operational scenario is a fleet of SAEVs operating in Austin 

(6-county and geofenced region) using heuristic charging and no repositioning. Zone-based 

repositioning was added to minimize supply deficits, which should lower wait time. Next, the 

proposed framework was leveraged to optimize charging trips to compare results against heuristics 

commonly used in agent-based models. Two optimization-based joint repositioning and charging 

scenarios were developed to emphasize joint repositioning and charging decision-making, 
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respectively (with a third trying to find a balance between the two). Table 2 shows the results from 

the geofenced core area service, followed by the 6-county metropolitan region in Table 3. Each 

table reports the results from the three charging station networks and six operational methods with 

respect to the following metrics: average pick-up wait times, average daily trips served per SAEV, 

percent empty VMT (%eVMT), percent repositioning VMT (%rVMT), and percent charging VMT 

(%cVMT). 

Table 2: Core area geofence (60.3 square miles) fleet performance 

Charging 

Station 

Operational Strategy Avg Wait 

Time (min) 

Avg Daily 

Trips 

%eVMT %rVMT %cVMT 

Distributed Base 5.93 43.36 21.49 - 8.07 

Optimal Charge 6.48 44.69 19.02 - 4.30 

Base Repositioning  2.57 46.66 31.98 8.55 10.03 

Demand Priority 2.68 43.49 25.53 12.23 4.98 

Charge Priority 5.00 45.10 19.08 2.23 4.58 

Joint 3.76 43.89 19.83 4.59 4.85 

Scaled 50% Base 9.47 41.71 25.57 - 8.08 

Optimal Charge 6.07 44.40 18.42 - 4.31 

Base Repositioning  3.18 46.09 29.87 11.42 9.93 

Demand Priority 2.70 43.51 24.25 11.85 3.88 

Charge Priority 4.77 44.65 18.81 2.27 4.57 

Joint 3.43 43.35 19.75 4.94 4.72 

Depot-like Base 10.18 39.29 26.87 - 8.64 

Optimal Charge 5.61 43.54 16.75 - 3.12 

Base Repositioning  2.57 46.66 31.39 13.00 10.53 

Demand Priority 3.06 43.65 21.19 9.99 2.11 

Charge Priority 4.69 43.58 17.07 2.02 2.90 

Joint 4.01 43.47 17.30 3.60 2.55 

 

 Simulations were all performed using Texas Advanced Computing Center supercomputers 

with most scenarios taking less than two hours, depending on the number of variables and the 

optimization solver (CPLEX or GLPK) used. CPLEX was used for the proposed optimization 

framework due to improved computational performance while GLPK was used for the base 

repositioning scenario that came from (de Souza et al., 2020). For reference, a 6-county charge 

priority simulation (using 15-minute repositioning-charging time steps) takes 47 minutes longer 

than the heuristic charging scenario, which itself takes 64 minutes. The time to solve the joint 
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recharging-repositioning optimization problem can take 7 to 21 seconds for each decision epoch, 

depending on the number of idle vehicles. Pre-processing times in creating the matrix of inputs to 

the solver are not included here but are also a function of demand. See Table F.1 in the Appendix 

for the time to solve the problem for the 6-county region during the evening peak demand. 

 

Table 3: Metropolitan 6-county region (5,300 square miles) fleet performance 

Charging 

Station 

Operational Strategy Avg Wait 

Time (min) 

Avg Daily 

Trips 

%eVMT %rVMT %cVMT 

Distributed Base 8.77 28.26 20.55 - 7.11 

Optimal Charge 9.83 31.28 21.50 - 7.74 

Base Repositioning  6.90 31.87 26.01 7.07 8.43 

Demand Priority 5.00 31.94 29.05 12.91 7.16 

Charge Priority 6.57 32.04 23.99 5.21 8.42 

Joint 5.50 31.57 25.69 8.56 7.57 

Scaled 50% Base 10.34 28.07 20.82 - 6.52 

Optimal Charge 10.05 30.01 22.31 - 8.45 

Base Repositioning  9.83 31.70 25.61 5.82 7.19 

Demand Priority 5.24 31.70 28.92 12.85 6.97 

Charge Priority 7.79 31.02 24.64 4.81 8.60 

Joint 6.18 31.21 25.77 8.19 7.74 

Depot-like Base 13.94 22.50 23.32 - 6.53 

Optimal Charge 10.66 27.74 19.36 - 4.52 

Base Repositioning  15.56 22.64 28.04 4.38 7.43 

Demand Priority 9.04 29.04 23.86 6.99 4.28 

Charge Priority 9.32 28.54 21.03 3.35 4.47 

Joint 9.04 29.04 22.08 4.92 4.34 

 

 The goal of repositioning is to better match supply and demand. Figure 4 plots average 

wait times (i.e., match wait time plus pick-up wait time) over the 24-h simulation across all 

operational scenarios for the regional service area with the original heuristic-sited charging station 

network. Similarly, centrally coordinated charging and joint charging and repositioning should 

reduce empty VMT while increasing fleet average SOC. Figure 5 plots fleet average SOC 

throughout the 24-h simulation for the regional service area, assuming the same charging station 

network. The joint strategies can keep higher average SOC over the 24 hours period. Apart from 

the demand priority case, they are also faster to recover higher SOC following the morning and 
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evening peaks. During special events (with disproportionate demand compared to historical data), 

the higher fleet SOC will enable a more resilient response.  

 
Figure 4: Average wait times by operational scenario (6-county service with distributed charging 

station network) 
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Figure 5: Average SOC by time of day by operational scenario (6-county service with distributed 

charging station network) 

 

 It is clear from both the tables and the plots that the joint optimization-based control 

strategies increase total served SAEV demand for the 6-county region but not necessarily for the 

geofenced service area. For the sprawling Austin region, the joint optimization scenarios (OC, DP, 

CP, and J) can increase total served demand from base repositioning on average by 2.8% and 3.9% 

for the distributed and scaled 50% charging station designs, respectively. The SAV-based 

repositioning strategy with heuristic charging (BaseRepo) can be greedy in rebalancing vehicles 

to meet demand in smaller regions, like the downtown core geofence here, and where chargers are 

abundant such that charging downtime and charging station locations are not as important. With 

increased demand, there are more opportunities for dynamic ride-sharing but fewer idle vehicles 

that can pick-up a passenger for a new tour. There is some difficulty in keeping wait times low for 
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the optimization scenarios, except for demand priority (DP). This suggests that the repositioning 

strategy to minimize supply deficit would benefit from a predictive estimate on minimum supply 

instead of relying on the prior quarter hour demand. The charging priority (CP) scenario seems to 

perform the best in raising fleet SOC throughout the day but can increase average wait times by 

two minutes compared to demand priority.  

6. Discussion 

6.1 Service Area and Charging Station Networks 

 The geofenced service area, which covers points of interest in Austin (e.g., the central 

business district, University of Texas at Austin, mixed-used developments, and the commercial 

airport), is likely to see SAEV service first. The model results indicate that zone-based 

repositioning can substantially improve service response (even in small regions and small zones, 

unlike (Chen et al., 2016)). For example, adding SAV-based repositioning decreased average wait 

times by 57% to 75% within the 60.3 square mile core geofence. Moreover, while using the 

previous 15-minute demand as a predictor for future demand is fine, operators will likely use an 

ensemble approach with ridership history and other data sources. At first glance, repositioning may 

want to be avoided in the downtown since SAEVs can exacerbate congestion (through an average 

of 31.1% unoccupied VMT), like present-day ride-sourcing fleets (Wenzel et al., 2019). However, 

Table 2 results show lower percent empty VMT (an average of 20.3 %eVMT) with almost all 

control strategies and charging station networks relative to SAV-based repositioning with heuristic 

charging. Without repositioning, the average SAEV misses up to an additional 11% daily trips. 

Coupling repositioning and charging into a single control strategy in the core geofence helps to 

lessen the societal cost of added mileage and at a lower expense per passenger traveled (i.e., the 

ratio of percent empty VMT to daily trips per vehicle). This ratio can explain the efficiency of a 
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fleet’s control strategy. If repositioning increases average daily trips per vehicle without increasing 

the percent empty VMT this inefficiency ratio will become smaller. If percent empty VMT 

increases at a rate that is more than half the increase in daily trips per vehicle, then the inefficiency 

ratio becomes greater. For a depot-like charging network, the inefficiency ratio for baseline 

repositioning is 0.70 versus 0.43 for the three joint optimization-based strategies. A large 

magnitude difference is observed for the two other charging station types. 

 In comparison, the larger 6-county service area may represent the long-term future of 

SAEV service where vehicles cover sprawling metros. Repositioning is essential in reducing the 

spatiotemporal mismatch of supply and demand. Figure 6 shows the average wait times for SAEVs 

across all zones during the morning and evening SAEV peak hours (7-8 am and 3-4 pm, 

respectively) for the scenario of baseline repositioning. When joint optimization (J) is introduced 

with well-distributed charging stations, the spatiotemporal mismatch is better addressed, see 

Figure 7. The median zonal wait time for joint optimization is reduced by 1.2 minutes in both the 

AM and PM relative to baseline repositioning. The downtown core, unsurprisingly, is where the 

lowest wait times can be found while higher wait times are found in the outskirts of the region. 

Although agents have a maximum wait time of 15 minutes, if a vehicle is initially assigned to them 

but is delayed (due to an unexpected range constraint, for example), the agent will have longer 

pick-up times. 
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Figure 6: Average wait times by zone during AM and PM peak hour for base repositioning with 

heuristic charging using a distributed charging station network 
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Figure 7: Average wait times by zone during AM and PM peak hour for joint optimization using 

a distributed charging station network 

 

 In the core geofence service area, a depot-like charging station network is preferred over 

distributed or scaled-down version because the average wait time is only 15-34 seconds longer 

across these joint scenarios, representing a minor opportunity cost for deferred investment in 

charging stations. At the same time, this charging station network exhibits lower percent empty 

VMT, which affects downtime, charging costs, and perhaps in the future empty travel fees. Since 

trip ends and stations are centralized, the distance between stations is not as important as in a 

sprawling region. In the larger service area, the scaled-down charging station network may be 

wiser because it provides distributed 1-plug stations to reduce empty travel (and offer coupled 
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charging-repositioning benefits), reduces investment costs, and still has low average charging 

times versus a depot-like network which concentrates charging and results in less demand served. 

Heuristic charging station siting algorithms may consider moving away from strict siting rules and 

instead use distance from the city center to increase the probability of generating a 1-plug station 

over a depot. 

6.2 Optimal Charging 

 Leveraging the proposed optimization framework to consider only charging leads can 

improve fleet average SOC during the off-peak hours (e.g., a difference of more than 10% SOC 

by 6 AM and again at noon), enabling the fleet to meet more trips throughout the day than the base 

case with no repositioning. The percent charging VMT (cVMT) can increase for the 6-county 

region (up to an additional 1.9 %cVMT) but vehicle utilization increases by an additional 1.9 riders 

per day. Table 2 indicates that base repositioning increases average daily trips per vehicle (+4.57, 

on average) and lowers average response times (-65.9%) but adds substantial percent empty VMT 

in this smaller geofence (+6.4). On the other hand, optimal charging (OC) sufficiently redistributes 

vehicles around (additional 1.33 to 4.25 average daily trips per SAEV) and keeps percent charging 

VMT down (%cVMT can fall by a magnitude of 7.41). If the depot-like network is preferred for a 

geofenced service area, the optimal charging policy may have similar average of 43.5 daily trips 

per vehicle as other joint repositioning and charging strategies. However, for a regional service, 

optimal charging is insufficient in repositioning vehicles, especially in the PM peak (see Figure 

4). 

6.3 Charger Downtime and Utilization 

 All scenarios charge a vehicle if the available range drops below a minimum threshold, 

which is largely unavoidable for SAEVs with consecutive trips. In comparison to the baseline 
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charging scenario where charging is controlled through 'idling gap-outs,' the charging priority (CP) 

optimization strategy prioritizes charging when it increases the value to the fleet (i.e., increase in 

SOC is greater than travel time cost and any supply deficit). There are already advantages for riders 

and the network with this strategy, but fleet operators will also want to know how this impacts 

charger utilization. Figure 8 shows boxplots for time spent at a charging station (queue plus 

charging) versus just charging across the day for the base and charging priority policy using a 

distributed charging network. Baseline charging does not prioritize an increase in SOC during the 

morning (see also Figure 5) and must charge throughout the day to recover after the AM peak. In 

comparison, charging priority has larger charging downtime in the early morning to prepare for 

the AM peak. Additionally, the optimization-based charging strategy can charge as many vehicles 

as available plugs at charging stations. In contrast, the base charging heuristic can send vehicles to 

a charging station irrespective of the queue time. This can explain the difference in downtime 

durations between the two plots (outliers often exceed 3.5 hours after noon for base versus a 

handful of outliers exceeding 1.5 hours during the early morning hours). Similar patterns are found 

with a scaled 50% charging station network (Figure 9). This charging station network has fewer 

plugs which increases vehicle downtime during the day for both base and charging priority 

scenarios. There is more charging during the morning to midday hours with charging priority 

because of fewer charging opportunities. 

 The distributed and 50% scaled-down charging station networks are oversized for the long-

range vehicles used in this analysis but benefit the fleet with smaller queues and more coupled 

charging-repositioning opportunities. Figure 10 plots the ratio of charging sessions per plug at a 

station averaged across all stations during each hour of the day for the base and charging priority 

scenarios for a distributed charging station network across the 6-county region. A ratio greater than 
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1.0 indicates that there were more charging sessions than the number of plugs, likely indicating at 

or near average station capacity (since not all charging sessions take an hour and not all plugs may 

be used). The boxplot shows that the ratio of demand to supply for each hour of the day is 

consistently concentrated at or above 1.0 for the charging priority policy. However, some stations 

in the base scenario have high utilization rates. While higher utilization of chargers makes the 

investment in chargers worthwhile, it can suggest that fleet operators may be exposed to high 

electricity demand charges. Although the charging priority policy does not seek to lower electricity 

costs (including demand charges), it appears to have this effect. 

 

Figure 8: Boxplot of downtime charging for the base and charge priority scenarios with a 6-

county service area and distributed charging station network (note: scale differences) 
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Figure 9: Boxplot of downtime charging for the base and charge priority scenarios with a 6-

county service area and 50% scaled-down charging station network (note: scale differences) 

 

Figure 10: Boxplot of average hourly ratio of charging sessions to plugs in a station for 6-county 

service and distributed charging station network 

6.4 Repositioning with Baseline Charging 

 The repositioning scenario with baseline charging (BaseRepo) demonstrates why fleet 

operators will likely pursue repositioning, even at the expense of added empty travel for other 

travelers. The 6-county region especially needs repositioning to attract more riders to SAEVs (up 
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to an 8.2% increase in demand for a 26.6% increase in percent empty VMT, which is equivalent 

to an additional 0.5 deadhead miles per rider). In a downtown geofenced service area, up to 6.2% 

more trips can be served with an uncoupled repositioning and charging strategy. Though the 

simulation allows for trip rejections due to a wait time limit, this is not recorded to compare the 

change in service rate. For example, a joint assignment and repositioning algorithm suggested by 

Alonso-Mora et al. showed a 20% increase in the service rate when the operator repositions idle 

vehicles (Alonso-Mora et al., 2017). Still, fleet operators would be wise to adopt a control strategy 

that optimize charging and repositioning trips at the same decision-making time step to ensure 

sufficient fleet supply for repositioning. Additionally, coupling charging with repositioning may 

address the empty travel dilemma (Dandl et al., 2019), which is that a 3%-6% rise in empty travel 

shortens range and could lower demand. 

6.5 Joint Optimization of Charging and Repositioning 

 The coupled framework aligning charging with repositioning trips reduced the idle time of 

vehicles overall by both increasing demand (9%-28%) and empty VMT (2%-41%) due to 

additional travel. However, a depot-like charging station network with charging priority policy for 

the 6-county region reduced percent empty travel by nearly 10% while increasing served demand 

by 26%, suggesting it is possible to serve additional riders while negating externalities like empty 

travel. 

 The average fleet SOC throughout the day was higher than the two previous baseline 

scenarios, further suggesting that charging downtime does not have to be detrimental if timed 

appropriately. Coupling the two events reveals synergies that fleet operators can exploit to increase 

revenue-generating opportunities. The repositioning scenarios result in a more balanced fleet than 

having no repositioning strategy, but the coupled strategy increases fleet SOC and increases the 
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likelihood of capturing more demand at later peak hours. If empty travel is penalized, this scenario 

suggests the best possible path forward.  

 The control strategy studied here decides the best repositioning and charging decisions at 

each decision epoch given the same set of available vehicles. Future work may study a sequential 

policy rather than a simultaneous optimization-based policy to understand whether the same results 

are achievable. However, a constrained second optimization may not lead to the best possible 

outcome. If the fleet size is scaled down, perhaps due to maintenance, and demand does not change, 

then there should be fewer idle vehicles. Depending on the priority for repositioning or charging, 

the sequential order may lead to the second problem having very few vehicle-to-zone choice 

combinations. A worse outcome may result, especially if the first problem consistently leaves few 

options for the second problem (i.e., a biased outcome due to prioritization). If the supply of 

available vehicles is not an issue, modelers could minimize prioritization bias in two ways: 

1)        If repositioning is solved first, a modeler could replace the travel time-based 

threshold for zones with a SOC-based threshold to prevent severe SOC loss.  

2)        If charging is solved first, a modeler could continue to prioritize low-SOC vehicles 

up to a ceiling on the number of vehicles sent to charge. The cap could be a ratio instead 

of a number so that the repositioning problem always has available vehicles. 

6.6 Updates on prior Austin SAEV Simulations 

 Differences in city residential and jobs densities, mode splits, and existing transportation 

infrastructure makes it difficult to compare simulation results across cities. For this reason, the 

results from this study are compared to Loeb and Kockelman (2019) and Loeb et al. (2018). While 

previous work and this paper simulated the same 6-county region, no down sampling of the 

population is required. Prior work simulated 5% of the region’s population (with an SAEV mode 
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share of 2%). Additionally, this work includes background external traffic (e.g., interstate freight 

and passenger travel). Other differences apply, including the ratio of SAEVs to agents – this study 

adopts a ratio of 1 SAEV per 125 agents while Loeb and Kockelman (2019) use a ratio of 1 SAEV 

per 10 residents (for a reduced fleet scenario). Our depot-like charging station scenario has 188 

stations while Loeb and Kockelman (2019) site 155 stations and only 5 stations in Loeb et al. 

(2018).  

 Table 4 compares performance metrics of this study to these past studies based in Austin. 

Previous heuristics may be biased low for average wait times and biased high for average daily 

trips, particularly for the ratio of SAEVs to residents and low mode split. A substantial difference 

exists in empty travel between the two prior studies and this study supports the empty travel 

reported from the earlier study (Loeb et al., 2018). Finally, Loeb and Kockelman (2019) report an 

average vehicle occupancy of 1.60. This study finds a revenue miles-weighted average vehicle 

occupancy of 1.65 to 1.79, depending on the operational strategy for the depot-like charging station 

network. Even though activity generation, and subsequently trip generation, is for single-person 

trips in POLARIS, assuming all riders are willing to share reveals consistently high vehicle 

occupancies. 
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Table 4: Comparison of Austin, Texas 6-county region (5,300 square miles) fleet performance 

results by study 

Study Operational Strategy Avg Wait 

Time (min) 

Avg Daily 

Trips 

%eVMT %rVMT %cVMT 

Loeb et al. 

(2018) 

Base (“Long Range 

SAEV Fast Charge, 

Reduced Fleet”) 

9.50 26.8 22.3 NA 6.45 

Loeb and 

Kockelman 

(2019) 

Base (“Long Range 

SAEV Fast Charge, 

Reduced Fleet”) 

9.20 35.1 8.62 NA 1.27 

Present 

Study 

Base 13.94 22.50 23.32 NA 6.53 

Optimal Charge 10.66 27.74 19.36 NA 4.52 

Base Repositioning  15.56 22.64 28.04 4.38 7.43 

Demand Priority 9.04 29.04 23.86 6.99 4.28 

Charge Priority 9.32 28.54 21.03 3.35 4.47 

Joint 9.04 29.04 22.08 4.92 4.34 

Note: The present study results are with a depot-like charging station to align more closely with number of stations in 

Loeb and Kockelman (2019). See the preceding text for an explanation of study differences. NA = not applicable. 

 

 

 

6.7 Limitations 

 The demand models, and subsequent trips, within the region are for a typical weekday. As 

a result, daily (and seasonal/special event) trends that are observed with ride-sourcing data are not 

present in weekday travel demand simulations. Additionally, the study relied on data inputs from 

the region’s metropolitan planning organization, including the road network that is less than full 

lane miles. An internal comparison between the model network and the OpenStreetMap network 

suggests there is a 53% reduction in center lane miles, assuming a 2-lane rule. However, many 

roads in the OpenStreetMap network have a 0.5 lane value, so using this network would require 

data manipulation to fix errors (which may change the estimate on the percent reduction in center 

lane miles).  

 The household travel survey used to create a mode choice model does not include trips 

made by tourists, who would not be sampled in the household travel survey and may rely more 

heavily on ride-sourcing vehicles than other modes. Additionally, we made modeling adjustments 
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to the estimated mode choice model to adjust utility values in the era of on-demand SAEV service. 

Although there have been advances in activity-based agent-based models, these limitations can be 

addressed in future work to provide increased realism. 

 Future work could include time-varying weights instead of creating distinct operational 

scenarios that apply for the entire simulated travel period. For example, increasing 𝛽 before and 

during peak traffic would further incentivize the operator to reposition vehicles to zones 

experiencing a supply deficit instead of using slack variables to balance demand and supply. 

Similarly, increasing 𝛼 during off-peak travel hours or low-cost electricity periods could spur more 

opportunistic charging. The latter is more useful in utility regions that charge time-of-use 

electricity rates. 

 

7. Conclusion 

 This study develops an optimization-based control strategy for charging and repositioning 

for a fleet of SAEVs and integrates it within a large-scale agent-based simulation. The framework 

is evaluated against heuristic charging and SAV-based repositioning strategies found in the 

literature to understand its operational performance and externalities. A set of six SAEV charging 

and/or repositioning control strategies are tested across three charging station network designs and 

two service regions to show how sprawl and charging station design can influence results. The 

results of all thirty-six scenarios lead to several key findings: 

• Without repositioning in a core geofenced region, central coordination of SAEV charging 

as opposed to vehicle-level heuristic charging can reduce average wait times (from 10.2 

min to 5.6 min), lead to higher demand served (an increase in 4.3 daily SAEV trips), and 

could allow for a reduced fleet size at the same level of service as the baseline. 
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• However, once a fleet serves a metropolitan region, a centrally coordinated charging-only 

strategy is not enough to rebalance vehicles, and a joint repositioning and charging control 

strategy is required. 

• Joint charging and repositioning can reduce added congestion on roadways (21% less 

percent empty VMT), increase served demand (28% more daily trips per SAEV), and 

reduce wait time (by up to 41%), assuming 6-county metropolitan service area with a 

depot-like charging station network.  

• The joint charging and repositioning strategy is most advantageous in the PM peak period, 

where demand is spatially and temporally spread out. By aligning charging in advance of 

expected demand, when there is little to no supply deficit, the fleet can increase vehicle 

availability for this evening peak period. 

• Centrally coordinated charging decisions better utilizes fleet-owned charging 

infrastructure, and the joint charging and repositioning control strategy can serve more 

average daily trips per vehicle at a sparser charging station network than the baseline 

charging strategy with a distributed charging station network.  

• Joint charging and repositioning decision-making that is constrained by charging station 

availability has the benefit of spreading out charging demand both spatially and temporally, 

leading to expected benefits for the distribution grid in reduced peak load and the operator 

in reduced demand charges. 

• Geofenced SAEV service can still benefit from zone-based repositioning and using the 

proposed framework for coupled charging improves upon heuristic charging (across all key 

metrics). Although average daily trips per vehicle may be higher with heuristic charging 

and SAV-based repositioning control, the increase in percent empty VMT and particularly 
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percent charging VMT is problematic for cities already experiencing significant travel 

delays. 

 This study forecasts future SAEV demand and the impact of optimal repositioning-

charging on meeting demand. It does not consider the temporal evolution of SAEV demand and 

charging station supply (i.e., transition to SAEVs), which should be considered in detail in future 

work. However, fleet operators would be wise to adopt a joint charging and repositioning decision-

making control strategy, as done in this study, to improve response times, reduce externalities, and 

improve ridership volumes per vehicle.  

 If electricity costs are incorporated into this objective function to minimize total 

operational costs (e.g., opportunity and electricity), then the frequency of charging would likely 

decrease. However, the objective function studied results in fewer charging trips per day even 

though the average daily trips per SAEV increases (resulting in lower direct electricity costs). 

Additional scenarios could be an optimization module that solves for the optimal fleet size, subject 

to demand that changes based on fare scenarios, wait times, and dynamic ride-sharing detour 

delays. 
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Appendix 

A. Baseline Repositioning Problem Formulation 

 The existing repositioning strategy from de Souza et al. (2020) is presented here:  

𝑃: min
𝑥𝑖𝑗

𝐽 

 𝐽 = ∑ 𝑡𝑖𝑗𝑥𝑖𝑗𝑖∈𝐼,𝑗∈𝑍    

s.t.   

0 ≤  𝑥𝑖𝑗 ≤ 1,                                                                         𝑖 ∈ 𝐼, 𝑗 ∈ 𝑍     

0 ≤  ∑ 𝑥𝑖𝑗𝑗∈𝑍 ≤ 1,                                                               𝑖 ∈ 𝐼  

∑ 𝑥𝑖𝑗𝑖∈𝐼 −  ∑ 𝑥𝑗𝑖𝑖∈𝐼𝑗
≥ 𝑓𝑗 − 𝑠𝑗 ,                                          𝑗 ∈ 𝑍          (A.1)  

 

 Defining variable 𝑦𝑧𝑗 = ∑ 𝑥𝑖𝑗𝑖∈𝑍(𝑖) , problem A.1 can be equivalently formulated in terms 

of the sum: 

𝑃: min
𝑦𝑧𝑗

𝐽 

 𝐽 = ∑ 𝑡𝑧𝑗𝑦𝑧𝑗𝑧∈𝑍,𝑗∈𝑍    

s.t.   

0 ≤  𝑦𝑖𝑗 ≤ |𝑍(𝑖)|,                                                                         𝑖 ∈ 𝑍, 𝑗 ∈ 𝑍     

0 ≤  ∑ 𝑦𝑖𝑗𝑗∈𝑍 ≤ |𝑍(𝑖)|,                                                               𝑖 ∈ 𝐼  

∑ 𝑦𝑧𝑗𝑧∈𝑍 − ∑ 𝑦𝑧𝑗𝑧∈𝐼𝑗
≥ 𝑓𝑗 − 𝑠𝑗 ,                                                𝑗 ∈ 𝑍          (A.2) 

 where |𝑍(𝑖)| refers to the number of elements on the set 𝑍(𝑖) (i.e., the number of idle 

vehicles at zone j). 
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B. Austin Model Calibration 

 The POLARIS model for the Austin metropolitan region was developed using various 

econometric models calibrated using data from both the region's metropolitan planning 

organization and the United States Census Bureau. The following plots (Figures B.1-B.4) show 

the count of hourly trip departures by time of day, count of trips by activity type, mode choice by 

trip purpose, and trip distance by activity type. The plots compare simulated POLARIS data and 

the observed data made available to the authors for this study. 

 Activity plans for agents are representative of a typical weekday before the COVID-19 

pandemic. The model’s time-dependent travel time matrices were obtained through convergence 

to minimize the gap between experienced and routed travel times under dynamic traffic 

assignment. Within the context of mode choice models, agents make activity plans (including 

mode choice planning) right before the travel day starts. The mode choice model uses time-

dependent travel estimates for planning. If the agent has a change in their activity schedule, skim 

travel time estimates are ignored, and within-the-simulation travel time estimates from the router 

are used. Wait times for SAEVs can be included in the mode choice model but were not built into 

the mode choice model for this region. Future work may consider new mode choice specifications 

for this region by using a feedback loop of zonal wait times or experienced zone-to-zone travel 

delay with dynamic ride-sharing (for a willingness to share model). 

 Fleet size is out of the scope of this study, though should be optimized since vehicle costs 

are expected to remain the largest share of total SAEV cost (Luke et al., 2021). Optimization of 

fleet size within a profit maximization problem is ignored in this study. A replacement rate strategy 

of sizing fleet proportional to residents of the geofence is used (e.g., 1 SAEV per 125 residents). 

The literature shows a range of fleet size proportion either to populations or to total trips served. 
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For example, Vosooghi et al. (2020) recommend 1 SAEV per 16 residents from a prior study that 

used a range of 1:8 up to 1:25 (Vosooghi et al., 2019). In contrast, Yi and Smart (2021) tested a 

range from 1:150 up to 1:200 and Gurumurthy et al. (2021b) used 1:100. If the control strategy 

can improve fleet efficiency, then it is plausible to study a fleet replacement ratio of 1 SAEV per 

125 residents over prior work using smaller ratios. 

 

Figure B.1: Distribution of trip departures by hour 

 

Figure B.2: Trip counts by activity type 
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Figure B.3: Distribution of mode choice by trip purpose 

 

Figure B.4: Average trip distance by activity type 

C. Charging Station Configuration 

 The scaling of the heuristic-sited charging station was done to examine the performance of 

the optimization framework more rigorously. The 75% reduction scenario of plugs per station is 

shown in Figure C.1. The green dots are stations with more than 1 plug (i.e., charging hubs). The 
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yellow dots contain include those green stations and 50% of the 1-plug stations (i.e., mix of central 

depots and distributed chargers). By randomly removing the other half (red dots), there is some 

clustering of stations in suburban parts of the region. The resulting charging station configuration 

is summarized in Table C.1 by station count and total number of plugs.  

 

Figure C.1: Depot-like charging station network creation 

Table C.1: Charging station configuration results by service area: plug count (station count) 

Charging Station Geofence Region (60.3 sq mi) 6-county Region (5,300 sq mi) 

Distributed 244 (13) 2045 (359) 

Scaled 50% 127 (13) 1197 (359) 

Depot-like 56 (9) 257 (188) 

 

D. Vehicle Disposal Model Outcome 

 Table D.1 lists the distribution of households by the number of vehicles they own. The 

leftmost column indicates the vehicle ownership distribution of the synthetic population that was 
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derived from data on existing household ownership from the United States Census Bureau. The 

rightmost column indicates a scenario of future vehicle ownership where households let go of their 

vehicle(s) and rely on other modes of transportation, including on-demand SAEVs. This 

distribution is derived from two adapted random parameters ordered probit econometric models: 

one for single-vehicle households and one for multi-vehicle households (Menon et al., 2019). The 

first change this study made was in lowering the multi-vehicle and single-vehicle household's 

threshold parameters for relinquishing a vehicle, which increases the probability of vehicle 

disposal. The second change was in adjusting triangular distribution parameters (i.e., lower limit, 

upper limit, and mode). 

Table D.1: Effect of vehicle disposal model 

Household Vehicles Baseline Vehicle Ownership Future Vehicle Ownership 

0 8.46 20.43 

1 32.53 37.43 

2 41.30 29.92 

3 12.42 8.39 

4 3.80 2.76 

5 or more 1.49 1.08 

Note: Future vehicle ownership case is a hypothetical based upon a model adopted from the literature. The authors 

used this model to simulate a future where residents increasingly rely on a system of on-demand SAEVs. 

 

E. SAEV Framework Weights 

 Table E.1 lists the weights used in the SAEV Framework (Equation (2)) for the two 

service regions by strategy type. 

Table E.1: SAEV framework weight parameters 

Operational Strategy 6-county (5,300 sq mi) region Core area geofence (60.3 sq mi) region 

Alpha Beta Alpha Beta 

Optimal Charge 100.0 0 50.0 0 

Joint 85.0 750 45.0 300 

Demand Priority 80.0 2000 40.0 1000 

Charge Priority 100.0 500 50.0 200 
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F. Computational Solver Times 

 Table F.1 lists the time to solve the problem for the 6-County region in this study for a 2-

hour portion of the evening peak period, as indicated from Figure B.1. 

Table F.1: Computational solve time for the 6-County region 

Charging 

Station 

Operational 

Policy 

2-Hour Evening Peak by Quarter-Hours 

4:00 

PM 

4:15 

PM 

4:30 

PM 

4:45 

PM 

5:00 

PM 

5:15 

PM 

5:30 

PM 

5:45 

PM 

6:00 

PM 

Distributed 

Optimal Charge 7 3 3 3 6 2 2 2 6 

Joint 9 4 4 5 9 4 4 4 9 

Demand Priority 13 7 6 7 13 6 6 6 14 

Charge Priority 8 4 3 4 10 4 4 4 10 

Scaled 

50% 

Optimal Charge 7 3 3 3 6 3 3 3 8 

Joint 11 4 4 6 10 5 5 4 3 

Demand Priority 13 6 5 6 10 6 5 6 15 

Charge Priority 8 4 4 4 8 4 3 4 7 

Depot-like 

Optimal Charge 2 0 0 0 0 0 0 0 0 

Joint 1 0 0 0 0 0 0 0 0 

Demand Priority 0 0 0 0 0 0 0 0 0 

Charge Priority 1 0 0 0 0 0 0 0 0 
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