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ABSTRACT 

Access to shared and fully-automated or “autonomous” vehicles (SAVs) is coming, and expected 

to be popular and cost-effective, especially for city dwellers. This chapter synthesizes and 

summarizes research on SAVs, including dynamic ride-sharing (en route), range-constrained 

electric SAV (SAEV) operations, SAV fleet costs, and variable road pricing in a world of AVs, 

where vehicle-miles traveled (VMT) rise and congestion worsen.  Researchers consistently find 

that a single SAV with long range and fast refueling can replace 6 or more household vehicles in 

countries with high vehicle ownership, even when serving long-distance trips. That number falls a 

bit when SAVs are range constrained and/or have long recharging times. Zero-occupancy VMT, 

called empty VMT, will be a problem for urban-network congestion levels if travelers do not share 

rides with strangers (increasing average vehicle occupancy) and road tolls are not included. 

Expected costs are consistently under USD $0.75 per revenue-mile, assuming the self-driving 

technology add USD $25,000 or less to conventional vehicles. SAEVs will bring some emission 

savings when vehicle-to-grid consumption is managed well. Fleet sizing, fare economics and 

regional policies will be key to managing this SAV future.  

Keywords: Shared mobility, autonomous, shared autonomous vehicles, dynamic ride-sharing, 

electric vehicles, future transport, pricing 
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Fully-automated or autonomous vehicles (AVs), referred to as Level 4 AVs according to SAE 

International1, are in an advanced testing phase in the U.S. states of Arizona, California, 

Pennsylvania, and Texas, among others. It will be no surprise if AVs are widely available for 

public use in the next five years. Technology companies, like Waymo (AV subsidiary of Alphabet 

Inc.) and Uber (Transportation Network Company, or TNC), are spearheading innovation in AV 

technology alongside original equipment manufacturers (OEMs), and significant progress has 

been made in as little as the last decade. Boasting benefits in several realms, such as travel time, 

energy and safety, AVs are geared to disrupt the market in the next decade (Kockelman et al., 2016 

& 2018). The benefits they have to offer, however, do come with a high price-tag. As in any 

industry, the cost of innovation is eventually burdened on the consumer, and, consequently, AVs 

are expected to be expensive to own, at least in the early stages of deployment. This chapter focuses 

on a particular near-term, and potential long-term, alternative to AV ownership – shared AVs 

(SAVs). 

A fleet of SAVs operated by one entity and shared by a community can be used to make trips and 

operate with minimal human intervention. One central control-unit will likely be sufficient to 

perform all operations for the entire fleet, thereby, significantly cutting down the required human 

capital. SAVs are also expected to be more profitable than current forms of car sharing and ride-

hailing services, largely owing to the absence of driver-related costs and human error (Fagnant and 

Kockelman, 2015). The improved safety of AVs will also mean that operators may pay lower 

insurance premiums, and this will allow them the flexibility to charge lower fares whilst having a 

similar or better profit margin as compared to today’s ride-hailing services (Clements and 

Kockelman, 2017). Aside from the profitability of the fleet from an operator’s perspective, they 

will also be a convenient yet affordable, door-to-door service for everyone. Nowadays, people tend 

to use their personal vehicles inefficiently, i.e., with several empty seats and for only about one 

hour a day, on average (Fagnant and Kockelman, 2018). Personal vehicles may be the most 

convenient alternative now, but they may start to seem expensive in contrast to SAVs. When they 

begin to make better use of these unused seats via dynamic ride-sharing (or DRS, where strangers 

share rides for a part of their trip), SAVs can keep fares to a minimum. Shared usage, especially 

in conjunction with cleaner technology like electric propulsion, can produce impressive 

environmental benefits (Farhan and Chen, 2018). 

Shared mobility is an obvious next step to utilizing AVs efficiently and research on this topic is in 

its infancy. This chapter aims to review the different dimensions of studies previously completed 

on this topic and provides an anticipated trajectory for future research. Some of the key elements 

covered here are the operational aspects of SAV use, travel demand for shared mobility, costs of 

these services, impact of electrification, and policies to better accommodate this evolving option.  

Research on SAVs has been a hot topic for less than a decade, but numerous researchers from 

around the globe have generated many valuable articles on different facets of SAV use. In terms 

of nomenclature used in this chapter most researchers use the term ‘SAV’ for 4-seater vehicles, 

                                                 
1 SAE demarcates 5 levels of autonomy, with level 4 and 5 being fully-autonomous and the other lower levels 

needing human input. Level 5 differs from 4 in the AVs ability to drive off-road and without connectivity or 

feedback from the infrastructure (https://saemobilus.sae.org/content/j3016_201609). 

https://saemobilus.sae.org/content/j3016_201609


and aBuses for with larger-capacity shared autonomous vehicles. Terms like ‘Autonomous 

Mobility-on-Demand’ (AMoD), ‘Shared use Automated Mobility Services’ (SAMS), and 

‘Autonomous Taxis’ (ATs or aTaxis) are also used. The following sections detail different 

dimensions of SAV and aBus research, ending with descriptions of literature gaps worthy of 

further exploration. 

FROM SHARING VEHICLES TO SHARING RIDES 

ZipCar began its operation in early 2000 and was key in popularizing carsharing. The growing 

popularity of AVs due to the DARPA challenge (Buehler et al., 2009) encouraged several 

researchers to delve into a mixture of AVs and carsharing. Burns et al. (2013) used aggregated trip 

data for three U.S. cities (Ann Arbor, Michigan; Babcock Ranch, Florida; Manhattan, New York) 

to solve, both analytically (using pre-defined relationship to system metrics) and using simulation, 

for an approximate fleet requirement. Their results suggested that a fleet range of 2,000 to 18,000 

SAVs were required depending on the region’s trip density and total number of trips in peak period. 

Similarly, fleet utilization varied between 70-90% in peak periods and had reasonable response 

times. Although their research made significant assumptions (like uniform origin-destination [O-

D] distribution) to simplify the process of estimation, it was one of the first studies on SAVs, 

quantifying metrics like empty driving and customer wait times. Some of these shortcomings were 

addressed by Spieser et al. (2014) in their study for Singapore using a more robust methodology. 

Using real trip data from a travel survey fused with network statistics from a taxi dataset, they 

showed that Singapore’s travel demand could be satisfied with just one-third of the then existing 

vehicle fleet. Both these studies strongly recommended the transition to SAVs, but also advised 

caution on the increase in vehicle-miles traveled (VMT) that can result from unoccupied travel. 

Fagnant and Kockelman (2014) were able to quantify this rise in VMT at 11% from studying travel 

patterns on a grid representing downtown Austin, Texas. A higher replacement rate of 11 to 1  (i.e., 

the number of conventional vehicles that can be replaced by 1 SAV) was observed in this study, 

which is nearly four times as much as Spieser et al. 

Brownell and Kornhauser (2014) explored the used of SAVs at a much larger level. Travel 

behavior for the entire state of New Jersey was aggregated in grids, arising from satellite feed 

pixels, due to the lack of a detailed road network. Their analysis tested SAVs as a paratransit 

service, and primarily showed that allowing O-D aggregation for pickup and dropoff (rather than 

fixed stops) increased average vehicle occupancy (AVO), i.e., number of travelers accommodated 

in one vehicle, due to increased convenience and comfort from closer pickup and dropoff points. 

Similar to Spieser et al. (2014), the entire state’s travel demand could be served by one-third of 

the personally-owned fleet, but it is important to note that Brownell and Kornhauser (2014) 

simulated a preliminary version of DRS. Burghout et al. (2015) was able to use a detailed network 

for Stockholm, Sweden but with a limitation of only zone level O-D available for personal-vehicle 

trips. They were able to test three subsets of DRS matched at the zone level, i.e., trips with common 

O-D pairs, trips with common O’s but different D’s, and trips with different O’s but common D’s. 

Owing to zone level information, intra-zonal travel time was assumed, and travel times were fixed 

at a fraction of the free-flow speed. An overall reduction in VMT was observed, thanks to DRS, 

with a fleet just 5% the size of the private fleet serving all trips. Although a version of DRS was 



tested by Brownell and Kornhauser (2014) and Burghout et al. (2015), severe aggregation and use 

of static travel times may have led to optimistic results of AVO and replacement rate (in hindsight) 

for the scenarios tested. It was common consensus by now that realistic behavior using dynamic 

traffic assignment (DTA), i.e., a simulation-based analysis, was required to understand the impact 

of an SAV fleet, and especially that of DRS. 

Large-Scale Agent-Based Simulations 

Simulation-based studies tried to incorporate realistic behavior but realism was added step by step 

over time, beginning with understanding an SAV fleet’s operation without DRS. The increased 

need for realism in travel demand modeling, in terms of both spatial and temporal scales,  resulted 

in the development of an agent-based model called the multi-agent transport simulation, or 

MATSim (Horni et al., 2016), and it quickly became popular for its ability to run DTA on a large 

scale. Fagnant et al. (2015) simulated SAVs on an idealized grid-network, of longitudinal and 

lateral links of equal length, representing downtown Austin, Texas, and using hour-by-hour travel 

times from MATSim. A sample of trips from the region’s travel demand model was simulated to 

use SAVs to account for uncertainty of the initial market toward AVs, while also spatially 

constraining the SAV operation to the downtown area. Their 24-hr weekday simulation found that 

each SAV could make all the trips originally made by nine conventional vehicles, and this was 

much higher than the replacement rate of 3 to 1 found in Spieser et al. but much lower than the 20 

to 1 estimated by Burghout et al. This was extraordinary considering that Austin’s population was 

only one-fifth that of Singapore in 2015, i.e., Austin likely had a much lower trip density, but it 

may also have stemmed from their downtown comparison, as opposed to Spieser et al.’s study of 

the entire region. However, Fagnant et al. also found an estimated 8% increase in VMT from SAVs 

operating unoccupied. On the bright side, their results did show better utilization of the fleet, and, 

therefore, possibility of reduced emissions from fewer cold starts and faster turnover of the fleet. 

Bösch et al. (2016) also conducted a similar analysis, using demand generated for Zurich, 

Switzerland in MATSim, running SAV simulations outside the MATSim environment. Their 

results of a 10 to 1 vehicle replacement ratio validated Fagnant et al.’s high rate, even when as 

little as 10% of the demand was served from an assumed low market penetration. From their 1000 

scenarios simulated, they were able to show that fleet size was a function of coverage area rather 

than the demand served. In both these MATSim-related simulations, the main drawback was that 

SAVs were not simulated internally with congestion feedback. 

Taking the next step in SAV simulations, Bischoff and Maciejewski (2016) integrated a 

dynamically-responsive SAV fleet within MATSim to observe congestion effects. Their work 

simulated 100,000 SAVs for Berlin, serving 2.5 million trips, and observed a 10 to 1 replacement 

rate for conventional vehicles, thus supporting the simplifications made by Fagnant et al. and 

Bösch et al. (2016). Results from their simulation showed increase in drive time (up to 17%) as 

compared to before the SAV service, which can be a proxy for VMT increase as observed by 

Fagnant et al., but no significant delays were seen. Although absence of significant congestion was 

attributed to better flow by SAVs potentially coordinating on the roadway, this is unlikely in the 

near-term because of safety concerns and human drivers fearing tight headways to SAVs, at least 

initially. 



Simulating Dynamic Ride-Sharing 

An increase in VMT was a common conclusion in the literature at this point which would 

eventually lead to increased congestion, despite several personally-owned vehicles being replaced. 

With prior research supporting the benefits of DRS, albeit with limitations, a natural next step was 

to observe network-wide impacts when an SAV service is operated with DRS. Fagnant et al.'s 

(2015) model on the gridded-network for Austin, Texas was extended by Fagnant and Kockelman 

(2018) to include DRS capabilities. Several conditions for added travel time to riders were included 

to filter away unrealistic ride-matching (with travelers experiencing high wait times or added 

delays) and an overall increase in the SAV fleet’s serviceability was observed. This study, which 

was published 2016, showed that the 8% increase in VMT that was previously observed, was at 

least partially mitigated, even with only a sample of the population using DRS. Adding more 

flexibility to the ride-matching procedure (like allowing greater than a 40% increase in travel time 

from DRS as opposed to direct O-D travel time, but with wait time constrained to approximately 

10 min) capped rising VMT at 1%. When more travelers (11% of the region’s demand) where 

simulated to use the service, the overall VMT decreased. DRS was, therefore, seen as a potential 

solution to the rising congestion.  

Maciejewski et al. (2017) documented ride-matching and traffic flow related algorithms used by 

Bischoff and Maciejewski, and introduced modifications to MATSim (specifically, by 

programmatically solving the dynamic vehicle routing problem) that allowed them to simulate 

DRS. This was further enhanced by Hörl (2017) further, where hetested how an SAV fleet behaved 

when rides were shared versus solo travel. By simulating a fleet where half the vehicles explicitly 

offered DRS while the other half offered a personal ride, Hörl was able to show that DRS may be 

preferred at off-peaks due to the low cost of a shared ride, together with DRS having low demand 

that reduced chances of matching, and, consequently, added delay. Personal rides were preferred 

during the peak to benefit from low travel times. Using the popular Sioux Falls test network, Hörl 

also simulated the fleet twice, once offering DRS and once offering only personal rides, to discuss 

efficient seat usage and attained a 1.64 maximum AVO with DRS, but was unable to comment on 

VMT because of the artificial network used. Better utilization of empty seats may be seen as a 

proxy for curbing rising VMT, but route deviations arising from DRS may have outweighed the 

saved VMT.  

Around the same time, Levin et al. (2017) developed a similar DRS application in a simulator that 

incorporated more realistic traffic flow for their case study of Austin, Texas. Their study provided 

a more measured assessment of AVs benefits, as opposed to more optimistic results from past 

studies that did not take into account congestion effects using realistic flow models. Shorter travel 

times and reduction in VMT was observed only when a small fleet of around 2,000 SAVs served 

nearly 63,000 trips in Austin’s CBD with DRS for 2 hours in the AM peak. Increasing fleet size 

decreased the necessity to share rides and decreased fleet utilization (i.e., many SAVs were idle). 

Each SAV was serving, on average, 31 trips in one day (each trip averaging 2.3 mi), which is 

comparable to that observed by Fagnant and Kockelman (2018) in their simulation with 11% of 

the region’s demand. 



Up until now, studies focused primarily on SAV use, be it with or without DRS. Martinez and 

Viegas (2017) studied a fleet of SAVs operating in Lisbon, Portugal, and included mode choice in 

their simulation. Two types of shared vehicles were available to choose from: 4-seater AVs and 

either 8- or 16-seater aBus, in addition to walk, or subway as available modes with the choice 

made based on an estimated model (substituting taxi and buses for their AV alternative). As a first 

in the literature, overall VMT was reduced by an astonishing 30% in their study when SAVs and 

aBuses were available, with results indicating significant emission benefits as well. A large AVO 

of 2.0 in SAVs and 4.2 in aBuses is likely the most significant contributor to this large decrease in 

VMT. This combined fleet of SAVs and aBuses could replace nearly 10 conventional vehicles.  

Another study to include mode choice was Liu et al. (2017) who also studied SAV fare impacts, 

but without DRS. They modeled choice between conventional vehicles, transit and SAVs, and 

served requests using an SAV, with a wait time threshold of 10 minutes. Although they observed 

significant energy and emission savings by considering better drive cycles for AVs (Kockelman 

and Boyles, 2018), the increase in VMT from the absence of DRS, and resulting congestion, was 

found at all fare levels. However, this will depend on how AVs are priced in the future. Further, 

the authors highlighted the importance of modeling destination choices for future studies to capture 

changes in trip distribution whilst using low-cost SAVs. Heilig et al. (2017) solved this problem 

with a case study for Stuttgart, Germany. Their model allowed choices for walking, biking, transit 

and sharing rides in SAVs, along with destination choice. They found overall VMT in Stuttgart 

reduced by about 20% using a relatively small fleet, just 15% the size of the existing private vehicle 

fleet, but similar to Bösch et al.'s (2016) findings who did not simulate DRS. Interestingly, the 

walk, bike and transit modal shares in Liu et al.’s future scenario increased, similar to Heilig et al. 

(2017) , although one might assume that low-cost alternatives of 50¢/mi for SAVs would prevent 

this. Zhao and Kockelman (2018), used a more familiar approach of a four-step demand model, 

and tested fare sensitivities when destination choice was modeled. Spanning 9 scenarios, they 

showed that VMT increased under different operating costs, parking costs, tolls. 

Operational Nuances, Parking and Solving the First-Mile-Last-Mile Problem 

The SAV literature’s focus eventually shifted from direct applications of SAV and DRS operations 

to understanding more nuanced information relating to concepts like proactive vehicle relocations 

and ride-matching processes, as noted next, as well as parking demand changes and first-mile-last-

mile (FMLM) benefits. 

An SAV fleet’s operational efficiency and ride-matching rate were tested by Hörl et al. (2018) and 

Ruch et al. (2018) using a common framework. The studies focused on testing two ride-matching 

algorithms (a simple heuristics and a bipartite optimization routine) and two rebalancing 

techniques for case studies of Zurich and San Francisco using MATSim’s traffic assignment 

module. Their results suggested that smart matching and rebalancing algorithms are able to quickly 

match travelers to their SAVs, and can give a competitive advantage in the market when several 

companies are competing for demand. However, from a single operator perspective, reduction in 

wait times proved to be beneficial. Hyland and Mahmassani (2018) tested six distinct dispatch 

strategies for an SAV fleet without DRS simulated using the Manhattan, New York grid. Their 

study revealed that any future SAV fleet is better off with an optimization framework in order to 



either reduce fleet size or empty VMT, and that this also depends on the spatial structure (e.g., 

dense or sprawling) of the region. Their research helps inform initial SAV operators dispatch 

strategies based on the region and their objective. 

Large availability of travel data from cellphone records, prompted Gurumurthy and Kockelman 

(2018) to conduct a benchmark test for DRS. Their study, based on travel in Orlando, Florida, 

generated the region’s demand and simulated them as served by an SAV fleet with DRS. The 

initial aggregate dataset was discretized temporally and spatially and DRS-based data analytics 

showed that around 60% of single-occupant trips in the region could be served by 60,000 SAVs, 

or 25 travelers per vehicle. This is lower than the 31 person-trips served per SAV in Fagnant and 

Kockelman (2018) but the discrepancy arose mainly from the sprawling region and special nature 

of recreational trips in Orlando. This study validated Hyland and Mahmassani's (2018) hypothesis 

on spatial structure with around 3% added VMT when ride-matches were maximized. However, 

it is important to note that even under sprawling conditions, DRS was found to be viable. 

SAVs are expected to lower parking demands, at least in downtown areas and other big trip 

attractors (like airports and hospitals). However, very few studies have analyzed parking demand 

changes. Using a simple simulation model, Zhang et al. (2015) predicted an optimistic 90% 

decrease in parking demand on a 10-mile hypothetical grid with only 2% of the population using 

SAVs, and even greater parking-demand reductions based on the willingness to share rides. Two 

years later, using a model that allowed discrete-time-based simulations, Zhang and Guhathakurta 

(2017) estimate a 5% less parking land required across Atlanta, thanks to just a 5% of vehicle 

owners shifting to SAVs. Moreover, parking demand was estimated to shift away from downtown 

spaces to low-income areas, if parking charges are assessed and privately owned AVs are allowed 

to drive empty in search of lower-cost parking. More recently, Millard-Ball (2019) focused on 

parking demand using travel data from the San Francisco demand models and tested how parking 

behavior affected the system, by comparing parking as before, free-for-all parking, SAVs returning 

home, and SAVs cruising around. He concludes that a shift to SAVs would not be beneficial 

overall, due to more driving and added congestion, and recommends using a time-based charge for 

SAV usage, irrespective of whether it is parked or moving. In a region’s CBD, this may be useful 

to apply across the board. 

Shared AVs with DRS, self-driving minibuses, and other versions of aBuses can also serve in lieu 

of existing buses, in addition to delivering travelers to and from train stations, much like present-

day TNCs offering a lower cost ride-sharing alternative. Liang et al. (2016) considered SAV 

service for a train station in Delft, Netherlands. FMLM service was designed using profit-

maximization strategies that served all requests. This zone level study concluded that the FMLM 

service can be profitable, though this study used fixed demand. Average VMT increased per 

vehicle with small fleet sizes, but no comment was made on network impacts. Scheltes and de 

Almeida Correia (2017) extended that work, to analyze network metrics via simulations that reflect 

additional SAV nuances (like dispatch and relocation) and test the impact of an SAV’s travel 

speed. Relocation strategies increased response times, but even with FMLM, increased overall 

VMT and added congestion. Shen et al. (2018) included DRS in their FMLM study and focused 

on when and where SAVs can best complement existing transit lines. They conclude that replacing 



underutilized bus lines or other forms of transit with SAVs will be beneficial. Farhan et al. (2018) 

sought to optimize SAV operations via DRS and were able to achieve a VMT reduction of nearly 

37%, versus without using DRS in Seattle. Pinto et al. (2018) used a dynamic assignment model 

to incorporate many details of transit use, such as boarding and alighting times and queue 

formation based on available space within transit vehicles. They analyzed how FMLM-serving 

SAVs can benefit such systems, and found that SAV vs. transit fares impacted mode choice 

significantly. Their bi-level solution framework showed that, overall, SAVs are expected to be a 

viable option for FMLM use (especially with DRS), in terms of network benefits. 

ENERGY AND EMISSIONS 

Utilizing the SAV fleet better than existing personal vehicle fleet will lead to some emission 

improvements. Fagnant and Kockelman (2014) showed that reduction in cold and warm starts (to 

0.05 and 0.7, respectively, per person trip) from shifting to an SAV fleet can reduce CO2 emissions 

and particulate matter in the air. These results stayed true even with a better simulation framework 

by Fagnant et al. (2015) showing an 85% reduction in  cold starts. SAVs and aBuses offering DRS 

as in Martinez and Viegas (2017) were able to reduce CO2 emissions by almost 40% across all 

road modes. 

Electrification can mitigate some of the issues caused by SAVs with internal combustion engines. 

These include eliminating engine idling, lower emissions to counteract added VMT and a quieter 

experience for the customer. EVs are also well suited for the ultra-rigorous use of an SAV fleet 

with likely less maintenance needs without the complexity of an ICE powertrain. The idea of 

electrified SAVs (or SAEVs) has gained the interest of researchers lately with many conducting 

agent-based models to understand how these systems operate. Researchers’ goal is generally to 

determine the feasibility of electrifying an SAV fleet, so the first step is looking at system 

performance. Gasoline vehicles’ nearly immediate refuel times and ubiquitous refueling stations 

make range a non-issue, but for EVs, recouping range can be a concern. In the near future, cities 

may have the power grid and charging infrastructure needed to provide inconsequential charge 

times, but in the meantime  it is not obvious if SAEVs can deliver timely, on-demand transportation 

service with today’s technology. Chen et al. (2016), Kang et al. (2016), Yang et al. (2017) and 

Loeb et al. (2018), all simulate SAEV fleets, focusing on response times and necessary fleet sizes. 

These papers published between 2016 and 2018 have modeled SAEV fleets with increasing 

complexity.  

Chen et al. (2016) modeled SAEVs in a generic grid imitating a large, metropolitan area with a 

dense, urban core. Trips were generated based on their proximity to the center of the area. The 

fleet and charging stations were generated based on demand through a “warm start” period to 

encourage reasonable vehicle start locations and charging station placement. Their goals were to 

understand how charge time and vehicle range affected the fleet size and the number of charging 

stations needed to serve demand quickly. They found a fleet of 200-mile range vehicles could be 

20% smaller than one composed of vehicles with 80-mile range and 30-minute fast-charging 

reduced fleet size by 30% compared to 4-hour charge times. Combining fast-charging and long 

range gave a 44% decrease in fleet compared to lower ranges and slower charging. The number of 

charging stations needed to meet demand did not vary much based on these modeling settings, but 



the number of chargers at each station could be cut by 45% when upgrading from slow charging 

to fast charging for the short range case and cut by 86% for the long-range case. Vehicle response 

times for trip requests was 7 - 10 min on average, unoccupied travel accounted for 10 - 14% of 

SAEV VMT (a very small portion of which was for charging) and each vehicle could replace up 

to 6.8 privately owned vehicles based on daily trip-making rates.  

Yang et al. (2017) used a more specific and detailed simulation environment modeled after 

Shanghai China. They collected a month’s worth of taxi travel behavior data from 13,761 vehicles, 

over 23% of Shanghai’s taxi fleet. This was used to map Shanghai into a grid, and trips were 

generated in each tile according to collected data (similar to methods used by Brownell and 

Kornhauser, 2014). Vehicles in the simulation environment were dispatched in an unusual first-

come, last-served system, where vehicles that ended a trip most recently were dispatched first. 

This was in order to reduce vehicle idle time. Several vehicle ranges were tested, varying from 93 

to 217 miles. 73% of vehicles were able to conduct a full day’s taxi operations without charging 

when equipped with 217-mile range. Full-load ratio (the ratio of occupied VMT to total VMT) 

was 89% in the simulation compared to 67% in (non-autonomous) observed data. They calculated 

that the SAEVs could reduce the total taxi fleet size by 41%, but each SAEV idled for an average 

of 15 hours a day, which means the replacement rate could likely be higher.  

Kang et al. (2016) took a slightly different approach by modeling an autonomous car-sharing 

service, where vehicles perform charging trips and meet passengers autonomously, but are human-

driven when occupied by a user so as to more seamlessly emulate the experience of a traditional 

car-sharing service. Rather than simply borrow trip data from literature, Kang et al. estimate 

demand through an iterative process with a profit-maximizing objective. Their model is an in an 

11 × 11 mile square simulating Ann Arbor, Michigan. Similar to Chen et al.’s findings, they 

determined that metrics like wait time are not effected by vehicle range and charge times so long 

as the vehicle fleet is sufficiently large. Charging stations were placed throughout the region at 

locations which minimize the average distance needed to travel to them. They assumed 30 minutes 

were needed to charge a 24 kWh (80-mile) battery to 80%. They found reasonable wait times of 

11.9 min, a bit slower than 9.7 minutes for a non-electrified fleet.  

Farhan and Chen (2018) incorporated DRS into Chen et al.'s (2016) model with an optimization 

framework to obtain best matches. Their results showed that fleet sizes could be further decreased 

with DRS, and DRS was effective even when vehicles fit only two travelers. The number of 

charging stations required also decreased with a net increase in benefits, but a drop in VMT was 

not confirmed.  

Loeb et al. (2018), inspired by Chen et al. (2016), used a detailed SAEV simulation environment, 

modeling the Austin, Texas region using a true network and zonal data as supplied by the local 

metropolitan planning organization. Trips on the network were modeled with state-of-the-art 

activity based modeling and dynamic traffic assignment in MATSim. Many concepts were 

borrowed from Chen et al., such as generating charging stations based on trip demand and testing 

a series of charging speeds and vehicle ranges. Unlike Chen et al. (2016), however, fleet sizes were 

fixed for each scenario and many more scenarios were tested. They found that response time was 

heavily dependent on charging speeds, going from under 4 min at 30-min charge times to over 9 



minutes with 4-hour charge. Vehicle range did not have nearly the same impact on response times, 

except with 4-hour charging time which forced response time from 9 minutes at 93-mile range to 

35 minutes at 62-mile range (electric range that was fairly typical at the time but would not be 

acceptable in today’s new EV market). Fleet size was by far the most impactful for response time. 

A fleet size equivalent to 9 travelers per vehicle gave response times of nearly 25 minutes with 30-

min charge times and 62-mile range. Increasing the fleet size to just 7 travelers per vehicle dropped 

response times to under 8 minutes for the same range and charge time. For all scenarios, 

unoccupied VMT hovered around 20% of all VMT.  

Lu Miaojia et al. (2018) used Ann Arbor’s travel demand model to quantify the energy use with 

SAVs and SAEVs, showing that both these fleets did not significantly help with curbing energy 

use or emissions compared to present-day vehicle fleets. There was an overall increase in energy 

use from empty VMT, and switching to electric propulsion increased SO2 emissions (a toxic 

pollutant) due to the emission intensity observed in Michigan’s electric-grid. However, the overall 

energy use decreased for SAEVs as compared to gasoline-powered SAVs. Another study by Lee 

and Kockelman (2019) used results from some of prior simulation studies mentioned here (Loeb 

et al., 2018; Loeb and Kockelman, 2019) and supported the positive effect that SAEVs will have 

in terms of energy and emissions reduction. Even though these vehicles will need to add charging 

trips to their itinerary, their research show that, overall, even with pessimistic  estimates, the energy 

use was lower and emission reduction was higher when a fleet of SAEVs are used compared to 

non-electrified vehicles. 

ENABLING REAL-TIME ROAD PRICING 

Futuristic AV technology enables much more than a profitable operation of a fleet of SAVs. State 

of the art automation along with high-speed connectivity offered by 5G technology that is expected 

to soon be available will enable better targeting of our current day road pricing techniques. As one 

may anticipate, this will be especially beneficial in the near future in aiding several local and 

federal authorities who are trying to mitigate rising congestion. Advanced real-time road pricing 

applied along with SAVs can hold many benefits. 

Sharon et al. (2017) first studied one such advanced policy which they termed delta-tolling. The 

idea behind the technique is to use measures such as current travel time and free flow travel time, 

that will be easily obtained using advanced 5G technology, and calculate appropriate tolls such 

that the overall social welfare (arising from better mobility) of the system increases and congestion 

reduces. The authors did not particularly test a system of SAVs, but this study forms a backbone 

for futuristic pricing policies that are tested in other studies noted below.  

The first study to jointly analyze SAVs and advanced pricing policies was Simoni et al. (2019). 

The authors compared several pricing policies in two futuristic settings: one where privately-

owned AVs dominate, and the other where SAVs dominate. Their results set the precedent to 

overcome increasing VMT from single-occupant SAVs, in a world where travelers are rather 

unwilling to share in the near future. Two congestion pricing schemes were tested: marginal cost 

pricing and a travel-time based congestion pricing. Marginal cost pricing assesses the optimal toll 

depending on the delay that one additional vehicle on the link imposes on others. Travel-time based 



congestion pricing set the toll depending on the time it takes to traverse a link. Both schemes help 

the network get closer to system optimum. These schemes applied to a future where mode choices 

between personal vehicles (both conventional and AVs), transit, walking/biking, and SAVs 

existed, resulted in a 3-4% increase in overall social welfare as opposed to scenarios without 

pricing. Overall congestion dropped across both the schemes and the revenue earned this way 

could also be reinvested in the community. Additionally, in countries like the United States, gas 

tax implemented decades ago is unable to generate enough revenue to keep up with rising 

infrastructure needs. Eventually, with increase in EV usage, the amount of gas used, and, 

consequently, revenue generated from the gas tax is bound to diminish. Road pricing can play an 

important role as an alternate source of revenue. 

With all the buzz around DRS, naturally, the next step forward from this study was to compare 

how a fleet of SAVs with DRS would fare in conjunction with pricing schemes. Gurumurthy et al. 

(2019) simulated competing modes in a future of SAVs where all travelers were considered 

potential customers for DRS. DRS, as expected and validated by many studies described earlier, 

lowered congestion compared to a fleet without DRS thanks to empty seats being put to use. 

However, when Simoni et al.'s (2019) travel-time based pricing scheme was applied, more benefits 

were observed. The fleet of SAVs performed better in terms of AVO (average vehicle occupancy), 

revenue and overall VMT compared to scenarios without pricing policies. The study did not focus 

directly into the specifics of the pricing scheme analyzed, but showed the possibility of SAVs 

operating alongside such pricing policies to improve the system, even when DRS was allowed.  

COSTS OF SAV SERVICE 

Operational viability of a fleet of SAVs or SAEVs forms an important point of discussion in this 

field of research. However, it is equally important to understand the financial aspect of these 

services. Ride-hailing services by TNCs these days are not making a profit. A large percentage of 

the fare revenue goes to the driver. Those that cannot turn a profit will have no market to operate, 

especially without federal funding like in the case of public transit or . Burns et al. (2013) included 

a cost analysis of the simplistic SAV service that they simulated. Low response times, in the order 

of seconds, combined with high conventional-vehicle replacement ratios in their study showed that 

SAVs were feasible at as little as $0.30 – $0.40 per mile. This is nearly one-tenth the fares that 

taxis charge (about $3/mi). These results offer for more robust calculations. Spieser et al. (2014) 

compared SAVs to personal vehicles (both conventional and autonomous), taking into account the 

explicit yearly costs (operation, retrofitting, and maintenance included) and value of travel time. 

SAVs were viable at $0.45 per mile, which was lower than both personal AVs and conventional 

vehicles. Fagnant and Kockelman (2018) showed that an assumed operating cost of $0.50 per mile 

would require that the fleet’s fare be assessed at about $1.00 per mile for a profitable operation 

when capital costs and traveler waiting costs were included. Bösch et al. (2018a) developed a 

detailed cost calculator to piece together the different contributions to the cost of an SAV service. 

Their study concluded an operational cost range of $0.50 per mile, for SAVs with DRS, to $0.70 

per mile for private ride in SAVs, which means that a profitable fare may be close to $1.00 per 

mile that Fagnant and Kockelman (2018) predicted. Bösch et al. (2018b) further used MATSim to 

run costs assessed in Bösch et al. (2018a) but across different modes, such as personal rides, shared 



rides, and transit. They established the tradeoff between VMT and total delay arising from these 

services, and suggested that the high costs associated with increased VMT can still be offset by 

gains from reduced travel times observed with SAV services. This is assuming that AV technology 

is able to maintain smaller headways resulting in higher effective road capacity. 

Similar calculations were carried out for the electric alternative. Many researchers delve into this 

topic from the angle of marketability as Kang et al. (2016) touched on. Iacobucci et al. (2018) 

proposed a unique concept that would allow SAEVs to save users money on their electricity bill. 

The plan revolved around Virtual Power Plants (VPPs), a service popular in Japan that combines 

many energy sources (with a focus on renewable sources) to supply power to consumers at 

predetermined levels of demand. This predictable power load reduces stress on the grid and thereby 

reduces the cost of electrical delivery. The study takes place in Tokyo and generates trips using 

survey data. It is assumed that enough wind and solar generators can be built to cover all non-EV 

electrical demand. Diesel generators would be available to keep up with excess electrical demand 

from the SAEVs. The proposed VPP service would also include bundled SAEV service. The study 

models scenarios with and without vehicle-to-grid (V2G) connectivity. V2G allows vehicles to 

discharge power back to the grid to smooth power loads in times of high power demand. They 

found major cost savings with their VPP, but those were dominated by the savings that come from 

users not needing to own a car. Their system reduced electricity costs by 32% without V2G and 

by 75% with V2G. SAEVs significantly increased carbon emissions in the study area. This is partly 

because Japan’s current fleet of mostly hybrids is already relatively efficient, and secondly because 

SAEVs introduce extra VMT due to empty travel.  

Chen et al. (2016) also looked at the prices associated with EVs, vehicle automation, chargers, 

insurance, maintenance, electricity, and replacement batteries. They found SAEVs would cost 

about $0.60 to $0.67 per occupied mile to operate when including 10% profit margins. These 

vehicles would be used an estimated 131 – 241 miles per day or 47,000 to 88,000 miles per year 

assuming minimal downtime for weekends, maintenance, etc. This is compared to $0.58 per 

occupied mile for non-EV SAVs with approximately 94,000 annual miles under the same 

assumptions. Loeb and Kockelman (2019) followed up Chen et al.'s cost estimates with their more 

detailed model and a few more cost considerations, such as cleaning, land acquisitions for charging 

stations and demand-based electricity costs. They estimated a cost of about $0.59 per occupied 

SAEV mile compared to $0.45 per occupied mile for a gasoline SAV fleet. This served to provide 

a rigorous validation of Chen et al.’s estimates.  

Kang et al. (2016) also looked carefully at a many of the same costs considered by Chen et al. 

(2016) and Loeb and Kockelman (2019), like charger costs, vehicle acquisitions, electricity cost 

and more. They used these figures to help understand SAVs’ level of competition with existing 

car-sharing service Zipcar. They found a market-based profit-maximizing price of $2.50 per 10 

minutes driving rate and a membership fee of $6 per month. Zipcar’s prices vary by location, but 

as of 2019, a typical base membership is $6 - $7 per month and about $10 per hour ($1.67 per 10 

minutes), up to 180 miles per day.  

USER PERSPECTIVES 



Research described above has supported the many benefits that SAVs can offer, with 

recommendations on several different facets of SAV use. However, it is important to realize the 

public perception of these advanced technologies and policies are adopted. This section summaries 

research conducted on the users’ perspective on SAV use. 

Bansal and Kockelman's (2018) study conducted in 2016 opened up the discussion on how users 

perceive future SAV use. Their results show that SAV characteristics persuaded large-family 

households and disabled users to be inclined towards SAV even when it was offered at $3.00 per 

mile, which is comparable to present day taxis largely owing to lack of mobility options. However, 

the average willingness to pay across all groups was low at $1.00 per mile. The characteristics of 

those willing to use SAVs showed promise for future market penetration. Haboucha et al. (2017) 

analyzed a survey that was distributed in Israel and North America on car-ownership and modeled 

whether people are willing to choose shared vehicles over personal vehicles (both conventional 

and autonomous). Their results, for the year 2015, observed a well-founded hesitation in switching 

to AV technology. A majority of users willing to switch to SAVs was found to be younger, and 

those who tend to spend more time in vehicles. Krueger et al.'s (2016) study focused on the choices 

between SAVs requested for solo travel and SAVs with DRS. Their study showed that people 

typically viewed these services as completely different options, with completely different values 

of travel time, as expected and assumed in studies. Their results supported Haboucha et al.'s (2017) 

finding that younger people are the most likely to adopt SAVs for frequent use.  

More recent studies indicate that preferences have changed considerably over time. Quarles and 

Kockelman (2018) took a closer look at how fares would impact respondents’ willingness to use 

SAVs and DRS. Their results suggested a value of $0.44 per mile maximum willingness to pay 

(WTP) to frequently use the service, which is much lower than what the service may cost (Bösch 

et al., 2018a). Gurumurthy and Kockelman (2019) also surveyed people’s WTP for SAV and DRS 

services in 2017. Their models predicted a WTP that was slightly higher on average (at $0.73 per 

mile), although the share of respondents willing to use the service was low. An elasticity analysis 

revealed that high usage levels were likely in the future with younger people inclined to use SAVs 

and opt into DRS. More recently a survey by Stoiber et al. (2019) among Swiss households has 

shown 61% of respondents prefer SAVs over personal-AVs. Perceptions may be continually 

evolving, and these studies show that there may be a general trend towards SAV usage and DRS. 

However, more surveys need to be conducted to capture this volatility in preferences.  

DISCUSSION 

This chapter covers the body of literature generated from 2010 to present in the realm of SAVs. 

SAVs are almost here and researchers around the world have studied several aspects of SAV usage. 

Table 1 shows a comprehensive list of articles relevant to this review laid out in chronological 

order. The different aspects of SAVs covered so far in this chapter are listed across the table.  

Several frameworks have been developed from scratch to analyze SAV use in different regions. 

To date, the most widely applied model for SAV simulations (tracking travelers and vehicles) 

appears to be MATSim. MATSim is open-source and able to run large-scale simulations. Recent 

code contributions by researchers around the world have enabled simulation of DRS, SAEVs, and 



advanced pricing policies. Another emerging agent-based modeling tool for SAVs is POLARIS 

(Auld et al., 2016), as developed by the US Department of Energy’s Argonne National Laboratory. 

Future Directions 

In the near term, AVs and human-driven vehicles will share the same infrastructure. Some driver 

apprehension may exist and these interactions need to be studied. Gaps in the rapidly evolving 

SAV literature also exist for replacing or complementing traditional transit services, including 

provision of first-mile and last-mile services. Large-vehicle SAVs with DRS is an important area 

that can be explored further and use of SAVs for commercial applications is largely missing in the 

literature. Other areas that merit further examination include congestion and parking impacts from 

SAV services, in combination with strategic SAV-stop placement (for pickups and drop-offs, 

especially in dense downtowns or other popular destinations), smart road tolling and microtolling 

(using AVs’ smart GPS systems), and vehicle design, to facilitate relatively private travel during 

DRS services, and route design, to enable deviations for relatively personalized aBus services. The 

behavioral response to data privacy from connectivity and data generation in AVs may also impact 

trip outcomes. These are some of the most immediate future research directions. 

Table 1: Features and contributions of all relevant articles on SAVs 

Relevant Articles (chronological) Region 
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Burns et al. (2013) 3 U.S. cities            

Spieser et al. (2014) Singapore            

Brownell and Kornhauser (2014) New Jersey            

Fagnant and Kockelman (2014) 10 mi grid            

Fagnant et al. (2015) Austin, TX            

Burghout et al. (2015) 
Stockholm, 

Sweden 
           

Zhang et al. (2015) 10 mi grid            

Bösch et al. (2016) 
Zurich, 

Switzerland 
           

Bischoff and Maciejewski (2016) 
Zurich, 

Switzerland 
           

Chen and Kockelman (2016) 100 mi grid            

Haboucha et al. (2017) 

Israel and 

North 

America 

           

Krueger et al. (2016) Australia            

Liang et al. (2016) 
Delft, 

Netherlands 
           

             



Chen et al. (2016) 100 mi grid            

Kang et al. (2016) 
Ann Arbor, 

MI 
           

Fagnant and Kockelman (2018) 

[published online in 2016] 
Austin, TX            

Bansal and Kockelman (2018) 

[published online in 2016] 
Texas            

Maciejewski et al. (2017) -            

Yang et al. (2017) 
Shanghai, 

China 
           

Hörl (2017) 
Sioux Falls, 

SD 
           

Heilig et al. (2017) 
Stuttgart, 

Germany 
           

Zhang and Guhathakurta (2017) Atlanta, GA            

Martinez and Viegas (2017) 
Lisbon, 

Portugal 
           

Scheltes and de Almeida Correia 

(2017) 

Delft, 

Netherlands 
           

Levin et al. (2017) Austin, TX            

Liu et al. (2017) Austin, TX            

Sharon et al. (2017) -            

Gurumurthy and Kockelman (2019) 

[data from 2017] 
USA            

Farhan et al. (2018) Seattle, WA            

Hörl et al. (2018) 
Zurich, 

Switzerland 
           

Pinto et al. (2018) 
Evanston, 

IL 
           

Loeb et al. (2018) Austin, TX            

Bösch et al. (2018a) 
Zurich, 

Switzerland 
           

Quarles and Kockelman (2018) USA            

Hyland and Mahmassani (2018) Chicago, IL            

Shen et al. (2018) Singapore            

Iacobucci et al. (2018) 
Tokyo, 

Japan 
           

Farhan and Chen (2018) Austin, TX            

Bösch et al. (2018b) 
Zurich, 

Switzerland 
           

Gurumurthy and Kockelman (2018) Orlando, FL            

Ruch et al. (2018) 

San 

Francisco, 

CA 

           

Lu Miaojia et al. (2018) 
Ann Arbor, 

MI 
           

Zhao and Kockelman (2018) Austin, TX            

Simoni et al. (2019) Austin, TX            

Gurumurthy et al. (2019) Austin, TX            



Lee and Kockelman (2019) Austin, TX            

Stoiber et al. (2019) Switzerland            

Loeb and Kockelman (2019) Austin, TX            

Millard-Ball (2019) 

San 

Francisco, 

CA 
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GLOSSARY 

aBus  Autonomous Bus 

AV  Autonomous Vehicle 

AVO  Average Vehicle Occupancy 

DRS  Dynamic Ride-Sharing 

DTA  Dynamic Traffic Assignment 

EV  Electric Vehicle 

ICE  Internal Combustion Engine 

MATSim Multi-Agent Transport Simulation 

O-D  Origin-Destination 

OEM  Original Equipment Manufacturer 

SAEV  Shared Autonomous Electric Vehicle 

SAV  Shared Autonomous Vehicle 

TNC  Transportation Network Company 

V2G  Vehicle-to-Grid 

VMT  Vehicle-Miles Traveled 

WTP  Willingness to Pay 

 


